精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰代數導論一 課程性質︰必修 課程教師︰莊武諺 開課學院:理學院 開課系所︰數學系 考試日期(年月日)︰2013/12/05 考試時限(分鐘):30分鐘 試題 : 代數導論第五次小考 INTRODUCTION TO ALGEBRA I - QUIZ V DEC 5 2013 You could assume the follow theorem. Sylow theorem. Let G be a group of order p^a˙m, where p is a prime not dividing m. Then we have (1) Sylow p-subgroup of G exist, (2) If P is a Sylow p-subgroup of G and Q is any p-subgroup of G, then P is contained in a conjugate of P, and (3) The number of Sylow p-subgroup of G, denote by n_p is of the form 1 + kp. Moreover n_p = |G:N_G(P)|. Hence n_p divides m. The quiz starts from here. (1) (15points) Prove that if P is a Sylow p-subgroup of G and n_p = 1,then P is normal in G. (2) (20 points) Prove that if |G| = 1365 then G is not simple. (3) (15 points) (Cauchy Theorem) Prove that if a prime p divides te order of a finit group G, then there exists an element of order p in G. -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 118.166.208.40 ※ 文章網址: https://www.ptt.cc/bbs/NTU-Exam/M.1423622331.A.E9E.html ※ 編輯: Malzahar (118.166.208.40), 02/11/2015 10:39:06