精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰代數導論一 課程性質︰必修 課程教師︰莊武諺 開課學院:理學院 開課系所︰數學系 考試日期(年月日)︰2013/10/31 考試時限(分鐘):30分鐘 試題 : 代數導論第三次小考 INTRODUCTION TO ALGEBRA I - QUIZ III OCT 31 2013 (1) (10 points) Please state the first isomorphism theorem and then apply it to prove the following corollary. Corollary: Let ψ : G → H be a group homomorphism. Then ψ is injective if and only if Ker(ψ) = 1. (2) (10 points) Let G be a group with order being a prime p. Show that G is isomorphic to a cyclic group. (3) (10 points) Prove that the permutation group S_n is generated by the set of transposition {(i i+1)|1≦i≦n-1}. (4) (10 points) Let A,B be groups and C,D be normal subgroups of A,B respectively. Show that (A ×B)/(C ×D) is isomorphic to A/C ×B/D. (5) (10 points) Let G be a group and N is a normal subgroup of G such that G/N is a finit group. Let H be a finit subgroup of G such that (|H|,|G/N|)=1. Then we have H≦N. -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 118.166.208.40 ※ 文章網址: https://www.ptt.cc/bbs/NTU-Exam/M.1423619208.A.5DB.html ※ 編輯: Malzahar (118.166.208.40), 02/11/2015 16:18:37