精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰ 高等微積分一 課程性質︰ 系定必修 課程教師︰ 陳金次 開課學院: 理學院 開課系所︰ 數學系 考試日期(年月日)︰ 2008/1/19(六) 考試時限(分鐘): 180分鐘 是否需發放獎勵金: 是 (如未明確表示,則不予發放) 試題 : WARNING! You have to choose 8 problems to answer. Please draw a score table on the first page of your examination paper, and write down explicitly what you choose to answer. 1. Let f and g be Riemannian integrable on [a,b], show that fg is also Riemannian integrable on [a,b]. 2. Let f be continuous on [0,π], try to find the value of π lim ∫ f(x)|sin(nx)|dx. n→∞ 0 3. Given 0 < x < 1, try to order tan(x^2), (tan(x))^2, xtan(x). 4. Let f be convex on R and assume that f(x) ≦ K ( x屬於R ) for some constant K. Prove that f ≡ constant. n 5. Let a_i,x_i > 0 for i = 1,2,3,...,n. If Σ (x_i)^2 = 1 i=1 n a_i try to find the minimum of Σ ------- . i=1 x_i 6. Prove that there is no function f defined on R such that f is continuous at all rational points but discontinuous at all irrational points. 7. Let xy(x^2-y^2) ------------- (x,y)≠(0,0) ╭ x^2+y^2 f(x) = │ ╰ 0 (x,y)=(0,0) (a) Prove that f (0,0)≠f (0,0) xy yx (b) Is f continuous at (0,0) ? 8. Let f be continuous on [0,1]. (a) Prove that 1 lim ∫ (x^n)f(x)dx = 0 n→∞ 0 (b) Try to find the value of 1 lim n*∫ (x^n)f(x)dx n→∞ 0 ? 9. (a) f^2 is Riemannian integrable on [a,b] ---> f is Riemannian integrable on [a,b].? ? (b) f^3 is Riemannian integrable on [a,b] ---> f is Riemannian integrable on [a,b].? 10.Let ╭ (x^α)*sin(1/x) x屬於(0,1] f(x) = │ ╰ 0 x = 0 try to determine the value of α such that f has finite arc length over [0,1]. 11.(a) Let ╭ 1 x ≧ 1 f(x) = │ ╰ 0 x ≦ 0 , try to define the value of f on (0,1) such that f屬於C^∞(R). (b) Let ╭ 1 x^2+y^2 ≦ (0.5)^2 g(x) = │ ╰ 0 (x,y) 不屬於 [-1,1] X [-1,1] , _____ try to define the value of g on [-1,1] X [-1,1] - N (0) 1/2 such that g 屬於 C^∞(R^2). 12. 0 < α < 2. Let ╭ (x^α)*sin(1/x) x屬於(0,1] f(x) = │ ╰ 0 x = 0 , prove that |f(x) - f(y)| < K|x-y|^(α/2) 所有的 x ≠ y 屬於 [0,1] , where K is constant. -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 220.135.131.55
rabbitmix:原來他也會出英文的唷...普通的微積分他都出中文XD 01/31 19:09
zephurl:不是~好像是助教打的 期中考兩次都是中文 01/31 19:39
※ 編輯: zephurl 來自: 220.135.131.55 (01/31 20:41)
dogiko:第二題怪怪...是n到無限大吧? 02/01 01:56
※ 編輯: zephurl 來自: 220.135.131.55 (02/01 06:35)
zephurl:thx 02/01 06:36