精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰高等微積分 課程性質︰系定必修 課程教師︰王振男 教授 開課系所︰數學系 考試時間︰2005/06/18 8:00-10:00 試題: Advanced Calculus Final (A) 1.(10%) If f:[0,∞) ×[0,1]→R is continuous, and ∞ F(y)=∫ f(x,y) dx 0 converges uniformly on [0,1], prove that 1 ∫ f(x,y) dy 0 is improperly integrable on [0,∞) and 1 ∞ ∞ 1 ∫∫ f(x,y) dxdy = ∫∫ f(x,y) dydx. 0 0 0 0 2. Compute the following integrals. 2 (a)(10%) ∫∫ e^(x+2y) dA where E is the trapezoid with vertices (1,1), E (2,2), (3,0), (6,0). x^2 y^2 (b)(10%) ∫ xdy-ydx where C is the boundary of the ellipse ── + ── = 1 C a^2 b^2 oriented in the counterclockwise direction. (c)(10%) ∫∫ F‧n dσ where S is the part of paraboloid z = 4-x^2-y^2 S with z≧0, n is the upward-pointing normal, and F(x,y,z)=(-x,y,3x^2). 2 2 2 2 2 2 (d)(10%) ∫∫ xy dydz + yz dzdx + x z dxdy where S is the sphere x +y +z = S 4 with outward-pointing normal. 3. 3 (a)(10%) Show that if E屬於R satisfies the hypotheses of Gauss's Theorem, then ∫∫∫(u△v+▽u‧▽v)dV= ∫∫ u▽v‧n dσ E E 的邊界 2 for all C functions u,v: E →R. 3 (b)(10%) Show that if E屬於R satisfies the hypotheses of Gauss's Theorem, then ∫∫∫(u△v-v△u)dV= ∫∫ (u▽v-v▽u)‧n dσ E E 的邊界 2 for all C functions u,v: E →R. n 4.(15%) Let D be an open bounded domain in R with smooth boundary 邊界D whose unit outer normal is denoted by n. Assume that u(x) is a nontrivial 2 C function satisfying △u-u^3=0 in D. Show that there exists some x_0 屬於 邊界D such that partial u ───── ≠ 0. partial n 2 5. Let D={(x,y)屬於R : x^2+y^2<1} and B={(x,y,z)屬於R : x^2+y^2+z^2 2 _ 2 _ 2 _ <1}. Suppose u屬於C (D\{0}), v屬於C (B\{0}) and w屬於C (B) satisfy (1) lim u(x,y) = lim v(x,y,z) = ∞, |x|+|y|→0 |x|+|y|+|z|→0 (2) u(x,y)=0, for all (x,y)屬於邊界D, (3) w(x,y,z)=v(x,y,z)=0, for all (x,y,z)屬於邊界B, 2 2 2 (4) (partial x+partial y+partial z) w(x,y,z)=0, for all (x,y,z)屬於B. Answer the following questions and prove or disprove your answers. (i) Caculate the line integral ∮ ▽u‧T ds along the positive 邊界D orientation, where T is the unit tangential vector. (5%) (ii) Caculate the line integral ∮▽v‧T ds along the positive orientation, 3 Γ where Γ={(x,y,0)屬於R : x^2+y^2=1}. (5%) (iii) Can there exist a point (x_0,y_0,z_0)屬於B such that w(x_0,y_0,z_0) >0? (5%) -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.250.148