精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰常微分方程導論 課程性質︰系必修 課程教師︰林紹雄 開課學院:理學院 開課系所︰數學系 考試日期(年月日)︰2010年10月26日 考試時限(分鐘):50分鐘 是否需發放獎勵金:是 試題 : There are problems (a) to (b) with a total of 50 points. Please write down yo- ur computational or proof steps clearly on the answer sheets. A real 4 ×4 matrix A has characteristic polynimial (x^2 +2x +2)^2. Its eigen- value -1+i (where i = (-1)^(1/2)) has generalized eigenvectors given by ┌ 1+i ┐ ┌ 1+i ┐ w1 = | i | , w2 = | 1+i | | 0 | | 1+i | └ 0 ┘ └ i ┘ so that Aw1 =(-1 + i)w1 and Aw2 = (-1+i)w2 + w1. (a) (35 points) Write down a real basis for the solution space of the homogen- eous equation y' = Ay. (b) (15 points) Consider the inhomogeneous equation y' = Ay + we^(-t)(cos t), where w ∈ R^4. What form of a particular solution is given by the method of undetermined coeffcients? -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.251.220