精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰常微分方程導論 課程性質︰數學系大二必修 課程教師︰林紹雄 開課學院:理學院 開課系所︰數學系 考試日期︰2010年11月30日(二),14:30-17:20 考試時限:50分鐘 是否需發放獎勵金:是 試題 :          Math 201-24900 (ODE) Quiz No.5 (11/30/2010) There are problems (A) to (C) with a total of 50 points. Please write down your computational or proof steps clearly on the answer sheets. A. (20 points) Consider the function f(t) = 2t*e^(t^2)*cos(e^(t^2)). Does there   exist M > 0 and constant C such that |f(t)| ≦Me^(Ct) as t→∞? Does L[f](s)   exist for s > 0? B. (10 points) Find the Laplace transform of f(t) = a^[t], where a > 0 is   constant, and [t] is the integer such that [t]≦t<[t]+1.                            2    2 C. (20 points) Apply the Laplace transform to solve a y'' - b y' = -1/2*δ(t)   for all t∈|R, assuming that y(t) satisfies y(-t) = y(t) for t∈|R, and   lim y(t) = 0. a and b are positive constants. t→∞ -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.25.97