精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰常微分方程導論 課程性質︰數學系大二必修 課程教師︰林紹雄 開課學院:理學院 開課系所︰數學系 考試日期︰2010年12月14日(二),14:30-17:20 考試時限:50分鐘 是否需發放獎勵金:是 試題 :         Math 201-24900 (ODE) Quiz No.6 (12/14/2010) There are problems (A) to (D) with a total of 50 points. Please write down your computational or proof steps clearly on the answer sheets. Consider the following plane autonomous system            dx    2       dy           ---- = -3x - 4y - 1, ---- = 4y - 4x.            dt           dt A. (10 points) Find its equilibra, and determine their stability. B. (20 points) Draw the phase portraits of the linearized systems around each   equilibrium.                        3     2 C. (10 points) Define the function G(x,y) = x + 4xy - 2y + x. If (x(t),y(t))^T   is an orbit of the system, prove that d/dt (G(x(t),y(t))≦0 for all t, and   if d/dt (G(x(t),y(t)) = 0 at some t iff this orbit is an equilibrium. D. (10 points) Use (c) to probe that the systme has no cycle orbit. -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.25.97