精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰常微分方程導論 課程性質︰數學系必修 課程教師︰陳俊全 開課學院:理學院 開課系所︰數學系 考試日期(年月日)︰2010/01/04 考試時限(分鐘):110分鐘 是否需發放獎勵金:是 (如未明確表示,則不予發放) 試題 : Choose 4 from the following 6 problems. (4) 1. Solve the equation y + 2 y'' + y = 3sin3t. 2. Use the Laplace transform to solve the equation (4) y - y = δ(t - 2) , y(0) = y'(0) = y''(0) = y'''(0) = 0 3. Use the method of reduction of order to find a second solution of the eqution (x - 1)y'' - xy' + y = 0, x > 1 ; y1(x) = expx 4. Find the general solution of the linear system ( -8 -1 0 ) x'(t) = ( 16 0 -1 ) x(t) ( 0 0 1 ) 5. Find the solution of the linear system ( 2 1 ) ( t ) ( 1 ) x'(t) = (-5 -2 ) x(t) + ( 3 ), x(0) = ( 2 ) 6. Let L{f(t)}(s) denote the Laplace transform of f(t). Suppose L{f(t)}(s) and L{g(t)}(s) both exist for s > a ≧ 0. Prove that L{h(t)} = L{f(t)}L{g(t)} for s > a, where t h(t) = ∫ f(t - σ)g(σ) dσ 0 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.218.187