精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰常微分方程導論 課程性質︰數學系二年級必修 課程教師︰陳俊全 開課學院:理學院 開課系所︰數學系 考試日期(年月日)︰2014/1/10 考試時限(分鐘):8:10~10:00 是否需發放獎勵金:是 (如未明確表示,則不予發放) 試題 : Choose 4 from the following 7 problems. (4) t 1. Solve the equation y - 2y'' + y = e + t. 2. Use the Laplace transform to solve the equation ︴2t, 0 ≦ t < 1, y'' + y = ︴ y(0) = y'(0) = 0. ︴0, 1 ≦ t < ∞, 2 3. Solve the equation (1 - t)y'' + ty' - y = t , 0 < t < 1. (Hint: y(t) = t is a solution of the homogeneous equation.) 4. Solve the linear system ( 2 1 1 ) ( 0 ) x'(t) = ( 2 2 -1 )x(t), x(0) = ( 1 ). ( 0 -1 2 ) ( 0 ) 5. Solve the linear system 2t ( 5 4 ) ( e ) ( 2 ) x'(t) = ( -2 1 ) x(t) + ( 0 ), x(0) = ( 1 ). 6. Let Ψ(t) be a fundamental matrix for the system x'(t) = A(t)x(t). Show that a solution of the system x'(t) = A(t)x(t) + g(t) has the form -1 t -1 x(t) = Ψ(t)Ψ (0)x(0)+Ψ(t)∫Ψ (s)g(s)ds. 0 7. Let A be a constant n ×n matrix. Explain the meaning of exp(A). -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 111.185.135.96