精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰常微分方程導論 課程性質︰必修 課程教師︰夏俊雄 開課學院:理學院 開課系所︰數學系 考試日期(年月日)︰2012/09/25 考試時限(分鐘): 試題 : ODE QUIZ 9/25/2012 You have to turn in the first problem set in class. 1. Solve the following differential equations. x''(t) - x'(t) - 2x(t) = e^t + cost, x'(0) = 1, x(0) = 0. x'''(t) - 3x''(t) + 3x'(t) - x(t) = 2t + e^t, x''(0) = 2, x'(0) = 2, x(0) = 1. x''(t) - 4x'(t) + 4x(t) = te^2t + 1, x'(0) = 0, x(0) = 1. x''(t) + tx'(t) + 2x(t) = 0, x'(0) = 2, x(0) = 1. x''(t) + x(t) = sin(2t) + cost, x(0) = 1, x'(0) = 0. 2.For a matrix A ∈ M_n(R), the minimal polynomial of A is a nonzero polynomial p(x) such that a) p(A) = 0, and b) for any nonzero polynomial f(x) satisfying f(A) = 0, deg(p(x))≦deg(f(x)). Show the following statements. (1) If p(x) is a minimal polynomial of A and the polynomial f(x) satisfying f(A) = 0, then p(x)|f(x) (p(x) is a factor of f(x)). (2) Let ╭ 0 1 0 0 … 0 ╮ │ 0 0 1 0 … 0 │ │ 0 … … … … 0 │ A = │ 0 … … … … 0 │ │ 0 … … … 0 1 │ ╰-a_0 -a_1 -a_2 -a_3 … -a_n-1╯ Prove that p(x) = x^n + a_n-1˙x^n-1 + … + a_1˙x + a_0 is a minimal polynomial of A. -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 118.166.208.77 ※ 文章網址: https://www.ptt.cc/bbs/NTU-Exam/M.1423790811.A.DAC.html