精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰常微分方程導論 課程性質︰必修 課程教師︰夏俊雄 開課學院:理學院 開課系所︰數學系 考試日期(年月日)︰2012/12/14 考試時限(分鐘): 試題 : ODE QUIZ 7 12/14/2012 You need to turn in Problems 1,2,4,5 in class. In this quiz, let f(t) and g(t) be piecewise continuous finction defined on [0,∞). The convolution of f(t) and g(t) are defined as t (f*g)(t) := ∫f(t-s)g(s)ds. 0 1.Calculate sint*sint. 1 2.Calculate the inverse Laplace transform of ──────. (s^2 + 1)^2 3. Let L denote the Laplace transform and L^-1 denote the inverse Laplace transform. Show that L(f*g)(s) = L(f)(s)L(g)(s), and L^-1(L(f)(s)L(g)(s)) = (f*g)(s). 4. Solve the integro-differential equation y'(t) = 1 - ∫y(t-s)(e^-2s)ds, y(0) = 1. 5. Do you think the following equations have periodic solutions? Prove or disprove it. x'' - x + x^3 = 0, x'' + x^2 - x^4 = 0. -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 118.166.208.77 ※ 文章網址: https://www.ptt.cc/bbs/NTU-Exam/M.1423802357.A.8C5.html