精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰偏微分方程導論 課程性質︰大二必修 課程教師︰陳俊全 開課系所︰數學學系 考試時間︰6/27 3:30~6:30 是否需發放獎勵金:是 (如未明確表示,則不予發放) 試題 : Choose 5 from the following 9 problems. 1. Let u satisfy u_t-u_xx=αexp(2t)x for 0 < x < ∞, 0 < t < ∞,u(x,0)=2x, u(0,t)=0. (a) Find the solution u for α=0; (b) Find the solution u for α=1. 2. Solve u_tt-u_xx=e^x for -∞ < x < ∞, -∞ < t < ∞, u(x,0)=0, u_t(x,0)=0. 3. Use the method of separation of variables to solve u_tt-u_xx=0 for 0<x<π , u(0,t)=0, u_x(π,t)=0, u(x,0)=sin(x/2), u_t(x,0)=0. 4. Let g(x)=π-|x|, -π<=x<=π. Find its Fourier series. π 5. (a) Let g(x) be a C^1 function on -π<=x<=π. Show that ∫sin(nx)g(x)dx->0 -π ∞ as n->∞.(b) Show that∫sin(nx)g(x)->0 as n->∞ still holds if g(x) is only -∞ continous. 6. Let(r,θ) denote the polar coordinates in R^2. Solve △u=0 for r<1, u=sin^2(θ) for r=1. 7. Let(r,θ) denote the polar coordinates in R^2 and v(r) be a function depending on r only. Suppose △v=0 in Ω. (a) Show that v is a constant if Ω=R^2. (b) Find all solutions v(r) for Ω=R^2/{0}. 8. Let u(x,y,z,t) be a bounded solution of the three-dimensional heat equation u_t=△u in R^3 with u(x,y,z,0) = (1+x^2+y^2+z^2)^(-1). Show that u(0,0,0,t)->0 as t->∞. 9.Assume that v(x,y,z,t) satisfies v_tt =△v and _ 1 v(r,t)= ─── ∫∫ v(x,y,z,t) dσ . 4πr^2 x^2+y^2+z^2=r^2 _ _ _ Show that v_tt = v_rr + (2/r)v_r. -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 61.217.159.69