精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰偏微分方程導論 課程性質︰大二必修 課程教師︰陳俊全 開課系所︰數學學系 考試時間︰5/2 3:30~5:20 是否需發放獎勵金:是 (如未明確表示,則不予發放) 試題 : 偏微分方程導論 期中考 <一> 25分 1. Solve (1) u_x+u_y+3u=e^y-e^(-2x) u(0,y)=-1 (2) yv_x-xv_y=0 v(x,0)=x^2 for x>=0 . <二> 以下6題選4題,各20分 2. Derive the equation of one-dimensional diffusion in a medium that is moving along the axis to the right at const speed V. 10x 3. (1) Solve u_tt =4u_xx , u(x,0)= -log(1+x^2) , u_t(x,0)= --------- (1+x^2)^2 . (2) Find max{u(x,t) : xεR, tεR}. ∞ (3) Show that ∫((u_t)^2+4(u_x)^2)dx is independent of t. -∞ 4. Let u(x,t) be a C^2 function. Show that u satisfies the wave equation u_xx=u_tt if and only if u(x+h,t+k) + u(x-h,t-k)= u(x+k,t+h) + u(x-k,t-h) for all x,t,h, and k. ∞ 1 (x-y)^2 5. u(x,t)=∫ ─── exp(- ────)ψ(y)dy satisfies the initial value problem -∞ √4πt 4t u_t=u_xx , xεR, t>0 u(x,0) = ψ(x), xεR Assume that ψ(x) is continous and |ψ(x)|<= 1/(1+|x|) for xεR. Show that (1) lim u(x,t)=0 for all t>0 and |x|->∞ (2) lim u(x,t)=0 for all x. t->∞ 6. Let ψ(x) be a continous and bounded function and ∞ 1 (x-y)^2 u(x,t)= ∫ ─── exp(- ────)ψ(y)dy. Show that lim u(x,t)=ψ(x) -∞ √4πt 4t t->0+ 7. Solve u_xx-4u_xt-5u_tt =0 , u(x,0)=e^x, u_t(x,0)=x+1. -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 61.217.159.69