精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰偏微分方程導論 課程性質︰數學系大三必修 課程教師︰林紹雄 開課學院:理學院 開課系所︰數學系 考試日期︰2013年05月13日(五),08:10-09:10 考試時限:60分鐘 是否需發放獎勵金:是 試題 :        Math 2206 (Introduction to PDE) Quiz No.5(5/03/2013) Solve the following problems. Please write down your computational or proof steps clearly on the answer sheets. A. (30 points) Let G = {(x,y)∈|R^2 | x^2 + y^2 <1}.   Consider the boundary value problem:                      ∂u   △u = 0 in G with boundary condition ----- + αu = 0 on ∂G,                      ∂n   where n is the outer normal of ∂G, and α∈|R is a constant. Use separation   of variables to solve this problem, and show that this problem has multipe   solutions only when α≦0. B. (30 points) Let G ⊂ |R^n be a bounded open domain whose boundary ∂G is   C^1 with n as its outer normal. Assume that u ∈C^2(G) ∩ C^1(bra(G))   satisfies Δu≧0 in G, and u(x_0) = max{u(x)|x∈bar(G)} at some x_0 ∈∂G.   If G satisfies the interior sphere condition at x_0, and u(x) is not a   constant, prove that (∂u/∂n)(x_0) > 0. C. (10 points) Let G ⊂ |R^n be an open domain, and u∈C^2(G). Prove that u is   subharmonic in G iff Δu≧0 in G. -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.252.31
t0444564 :已收錄 05/03 13:36