→ t0444564 :已收錄 05/23 10:16
課程名稱︰偏微分方程導論
課程性質︰數學系大三必修
課程教師︰林紹雄
開課學院:理學院
開課系所︰數學系
考試日期︰2013年05月17日(五),08:10-09:10
考試時限:60分鐘
是否需發放獎勵金:是
試題 :
Math 2206 (Introduction to PDE) Quiz No.6 (5/17/2013)
Solve the following problems. Please wirte down your computational or proof
clearly on the answer sheets.
A. (10 points) Let G = {(x,y)∈R^2 | x > 0, y > 0} be the first quadrant of the
plane. Write down the Green function for G with Dirichlet boundary
conditions.
B. (30 points) Suppose that u∈C^2 (B_(2a)(0)) is a nonnegative harmonic
function in B_(2a)(0)⊂R^n (where a > 0 is a constnat), prove that
a^(n-2)(a-|x|) a^(n-2)(a+|x|)
----------------u(0) ≦ u(x) ≦ ----------------u(0) for |x| < a.
(a+|x|)^(n-1) (a-|x|)^(n-1)
C. Determine which of the following statements is true. Each has 15 points.
(a) Let G = {(x,y)∈R^2 | y > 0}. If u∈C^2(G)∩C(bra(G)) is harmonic in G,
and u = 0 on ∂G, then u = 0 in G.
(b) Let G = {(x,y)∈R^2 | y≠ 0}. If u∈C^2(G)∩C(R^2) is harmonic in G,
then u∈C^2(R^2), and is harmonic in R^2.
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 140.112.252.31