精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰偏微分方程導論 課程性質︰數學系大三必修 課程教師︰林紹雄 開課學院:理學院 開課系所︰數學系 考試日期︰2013年05月17日(五),08:10-09:10 考試時限:60分鐘 是否需發放獎勵金:是 試題 :       Math 2206 (Introduction to PDE) Quiz No.6 (5/17/2013) Solve the following problems. Please wirte down your computational or proof clearly on the answer sheets. A. (10 points) Let G = {(x,y)∈R^2 | x > 0, y > 0} be the first quadrant of the   plane. Write down the Green function for G with Dirichlet boundary   conditions. B. (30 points) Suppose that u∈C^2 (B_(2a)(0)) is a nonnegative harmonic   function in B_(2a)(0)⊂R^n (where a > 0 is a constnat), prove that     a^(n-2)(a-|x|)         a^(n-2)(a+|x|)    ----------------u(0) ≦ u(x) ≦ ----------------u(0) for |x| < a.     (a+|x|)^(n-1)          (a-|x|)^(n-1) C. Determine which of the following statements is true. Each has 15 points.   (a) Let G = {(x,y)∈R^2 | y > 0}. If u∈C^2(G)∩C(bra(G)) is harmonic in G,     and u = 0 on ∂G, then u = 0 in G.   (b) Let G = {(x,y)∈R^2 | y≠ 0}. If u∈C^2(G)∩C(R^2) is harmonic in G,     then u∈C^2(R^2), and is harmonic in R^2. -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.252.31
t0444564 :已收錄 05/23 10:16