→ t0444564 :已收錄 05/03 04:55
課程名稱︰複變數函數論
課程性質︰數學系大三必修
課程教師︰王藹農
開課學院:理學院
開課系所︰數學系
考試日期︰2012年01月10日(二),13:20-15:10
考試時限:110分鐘
是否需發放獎勵金:是
試題 :
Complex Analysis Final Jan. 10 2012
1. Can you find a non-constnat harmonic function u(x,y)≧0 defined on the whole
xy-plane? If yes, u(x,y)=? Can you find a non-constant subharmonic function
v(x,y)≧0, △v(x,y)≧0 defined on the whole xy-plane? If yes, v(x,y)=?
(10/50)
2. Ω={z| 0<|z|<1}. Can you solve the Dirichlet problem and find a harmonic
function u in Ω with boundary value f(θ)≡0 when |z|->1, and u->1 when
|z|->0 ? If yes, express u interms of polar coordinate u=u(r,θ)=?
A={z| 1/2<|z|<1 }. Can you solve the Firichlet problem and find a harmonic
function U in A with boundary value f(θ)≡0 when |z|->1, and u->1 when
|z|->1/2 ? If yes, express U in terms of polar corrdinate U=U(r,θ)=?
(10/50)
3. Let w=w(z) be a doubly periodic elliptic function w(z) = w(z+K) = w(z+iK)
satisfying the differential equation w'(z) = dw/dz = √[(1-w^2)(1-k^2w^2)].
k = ? (10/50)
∞
4. For Re(z) > 1, ζ(z) = Σ(1/n^z). As z->1, ζ(z)->∞. Is z=1 an isolated
1
singularity? If not, determine its domain as a Riemann surface with
branch points. If yes, residue (ζ,z=1)=?
∞ n
5. tan z = Σ(a_n)z a_7 = ? (10/50)
0
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 140.112.4.199