精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰複變數函數論 課程性質︰數學系大三必修 課程教師︰王藹農 開課學院:理學院 開課系所︰數學系 考試日期︰2012年01月10日(二),13:20-15:10 考試時限:110分鐘 是否需發放獎勵金:是 試題 :        Complex Analysis Final          Jan. 10 2012 1. Can you find a non-constnat harmonic function u(x,y)≧0 defined on the whole   xy-plane? If yes, u(x,y)=? Can you find a non-constant subharmonic function   v(x,y)≧0, △v(x,y)≧0 defined on the whole xy-plane? If yes, v(x,y)=?   (10/50) 2. Ω={z| 0<|z|<1}. Can you solve the Dirichlet problem and find a harmonic   function u in Ω with boundary value f(θ)≡0 when |z|->1, and u->1 when   |z|->0 ? If yes, express u interms of polar coordinate u=u(r,θ)=?   A={z| 1/2<|z|<1 }. Can you solve the Firichlet problem and find a harmonic   function U in A with boundary value f(θ)≡0 when |z|->1, and u->1 when   |z|->1/2 ? If yes, express U in terms of polar corrdinate U=U(r,θ)=?   (10/50) 3. Let w=w(z) be a doubly periodic elliptic function w(z) = w(z+K) = w(z+iK)   satisfying the differential equation w'(z) = dw/dz = √[(1-w^2)(1-k^2w^2)].   k = ? (10/50)              ∞ 4. For Re(z) > 1, ζ(z) = Σ(1/n^z). As z->1, ζ(z)->∞. Is z=1 an isolated              1   singularity? If not, determine its domain as a Riemann surface with   branch points. If yes, residue (ζ,z=1)=?       ∞   n 5. tan z = Σ(a_n)z    a_7 = ? (10/50)       0 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.4.199
t0444564 :已收錄 05/03 04:55