精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰微積分甲上 課程性質︰數學系必修 課程教師︰林紹雄 開課學院:理學院 開課系所︰數學系 考試日期︰2006年11月02日 考試時限:未知 是否需發放獎勵金:是 試題 : The total of the following problems is 50 points.Please write down your computational, or proof steps clearly on the answer sheets. A. Let f(x) be defined on the interval (-1,0) (a) (5 points) Write down the "definition" of the limit lim x→0- f(x)=α. (b) (8 points) Use the above definition to prove the limit lim x→0- f(x)=1 for the function f(x)=x[1/x], where [1/x] denotes the greatest integer not greater than 1/x. sin(1-cos x) B.(7 points) Find the limit lim x→0 ─────── . x^2 C.Define the function f(x)={cos x+(1/2)cos 2x, if x≧0} {a|x+1|+b, if x<0} where a and b are two constants. (a) (5 points) Find conditions on a and b so that f(x) is continuous at every point. (b) (5 points) Find conditions on a and b so that f(x) is differentiable at x=0. (c) (10 points) Under the conditions of (b), find all the critical points of f(x), and find the maximum and minimum of f(x) on the interval [-2,2π]. D.(10 points) Let f(x) be defined by f(x)={1/x, if 0<x≦1} {0, if x=0 } Give sufficient reasoning to show that f(x) is not Riemann integrable on [0,1] 試題結束 -- Wenn der Altenberg nicht im Kaffeehaus ist, ist er am Weg dorthin. -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 203.73.252.114