精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰高等統計推論 課程性質︰選修∕數研所統計組必修 課程教師︰陳宏 教授 開課系所︰數學系 考試時間︰2006/06/21 13:20-15:20 是否需發放獎勵金:否 (如未明確表示,則不予發放) 試題: Advanced Statistical Inference II Final Test (Spring 2006) 1. (60 points) Let X_i, i=1,2, be independent with p.d.f.'s λ_i‧exp(-λ_i‧x)‧I_(0,∞)(x), i=1,2, respectively. Let θ=λ_1∕λ_2. Show that θX_1∕X_2 is a pivotal quantity and construct a confidence interval for θ with confidence coefficient 1-α, using the pivotal quantity. 2. (100 points) Let X_1,...,X_n be iid from the uniform distribution U(0,θ) with an unknown θ>0. -1 -1 (a) (40 points) Consider the interval of the form [b X_(n), a X_(n)] -n -n where b -a =1-α. Determine a and b to make an interval with shortest length. (b) (10 points) Find the distribution of ln(X_1). ~ n 1/n (c) (20 points) Find the asymptotic distribution of X=(Π X_i) . i=1 (d) (20 points) Use (c) to propose a confidence interval of θ. (e) (10 points) For the intervals obtained in (a) and (d), which one do you prefer? Give reasons to support your claim. 3. (100 points) Let X_1,...,X_k be independent and Poisson distributed with parameter λ_i as x_i λ_i -λ_i f(x_i;λ_i)=───‧e , x_i=0,1,... x_i! where λ_i>0 are unknown. (a) (10 points) Show that the MLE of λ=(λ_1,...,λ_k) is ︿ ︿ ︿ λ=(λ_1,...,λ_k)=(X_1,...,X_k). (b) (10 points) Consider the composite hypothesis H_0: λ_i=αd_i, i=1,...,k, where d_i are known numbers and λ>0 is unknown. Derive ︿ ︿ the MLE λ_10,...,λ_k0 under this hypothesis. (c) (30 points) Find the Wald test statistic for H_0. (d) (30 points) Find the LRT test under H_0 versus H_2: λ_i≠αd_i and indicate its asymptotic distribution. (e) (20 points) Find the LRT test under H*_0: λ_i=d_i, i=1,...,k versus H_0. Please describe its asymptotic distribution. 4. (50 points) Suppose that X_1, X_2 is a random sample from a uniform distribution over (0,1). (a) (30 points) Find the probability of the random interval (X_1∕(3X_2), 2X_1∕X_2) containing 2/3. (b) (20 points) Among all random intervals of the form (aX_1∕X_2, bX_1∕X_2) where 0≦a<b, find the shortest interval containing 2/3 with probability 7/12. 2 5. (50 points) Observe (x_1, Y_1),...,(x_n, Y_n) where Y_i~N(α+βx_i, σ ) n and Σ x_i=0. i=1 (a) (20 points) Derive the maximum likelihood estimators of α and β. (b) (30 points) Construct a 95% confidence interval for α+β. Remark: For questions 4 and 5, you only need to answer one only. -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.250.148