精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰偏微分方程式二 課程性質︰數學研究所基礎課 課程教師︰林太家 開課學院:理學院 開課系所︰數學系、數學研究所、應用數學科學研究所 考試日期︰2015年03月31日(二),10:20-12:10 考試時限:110分鐘 試題 :             Test 1                03/31/2015 1. 30%  Let f(x) = |x| for x∈I=(-1,1).            1    1,2  i.  Prove that f∈H (I) = W (I). (10%)        2   2,2  ii. Is f∈H(I) = W  (I)? Justify your answer. (10%)           2          d f  iii. Calculate ----- in weak sense. (10%)           2          dx 2. 30%                    3  Let g(x) = log|x| for x=(x1,x2,x3)∈B={x∈R : |x|<1}, where        2  2  2  |x| = √(x1 + x2 + x3).            1    1,2  i.  Prove that g∈H (I) = W (I). (10%)  ii. Find a sequence of functions {gk} such taht       ∞              1     gk∈C (B) for k∈N, and gk→g in H (B). (10%)       0        2    2,2  iii. Is g∈H (I) = W  (I)? Justify your answer. (10%) 3. 20%  Assume 0 < β < γ≦1. Prove the interpolation inequality                 (1-γ)/(1-β)      (γ-β)/(1-β)    ∥u∥0,γ ≦ (∥u∥0,β )      (∥u∥0,1  ).      C (U) C  (U)         C  (U) 4. 20%           1,p  Prove that if n=1 and u∈W (U) for some 1≦p<∞, then u is equal a.e. to  an absolutely continuous function, and u' (which exists a.e.) belongs to   p  L (0,1). -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 1.162.80.172 ※ 文章網址: https://www.ptt.cc/bbs/NTU-Exam/M.1428937632.A.DE2.html