精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰偏微分方程式二 課程性質︰數學研究所基礎課 課程教師︰林太家 開課學院:理學院 開課系所︰數學系、數學研究所、應用數學科學研究所 考試日期︰2015年04月28日(二),10:20-12:10 考試時限:110分鐘 試題 :               Test 2                 4/28/2015 1. 20%            1,p  Prove directly that if u∈W (0,1) for some 1 < p < ∞, then           1-(1/p)  1  p  (1/p)  |u(x)-u(y)|≦|x-y|    (∫|u'| dt)   for a.e. x,y∈[0,1].                0 2. 20%  Assume 1 < p < ∞, and U is bounded.              1,p       1,p  (i) Prove that if u∈W (U), then |u|∈W (U).            1,p      + -  1,p  (ii)Prove that u∈W (U) implies u, u ∈W (U), and              +  / Du  a.e. on {u > 0}             Du =                \ 0   a.e. on {u≦ 0},              - / 0  a.e. on {u≧ 0}             Du =                \ -Du  a.e. on {u < 0}.        +    (Hint: u = lim F_ε(u), for         ε→0                 / (z^2+ε^2)^(1/2) - ε if z≧ 0            F_ε(z):=                  \ 0           if z < 0.)              1,p  (iii) Prove that if u∈W (U), then           Du = 0 a.e. on the set {u = 0}.  Integrate by parts to prove the interpolation inequality:              2      2 (1/2)   2 2 (1/2)           ∫|Du| dx ≦ C(∫u dx)  (∫|D u| dx)            U       U      U        ∞                          2   1  for all u∈C (U). By approximation, prove this inequality if u∈H(U)∩H(U).        c                             0  3. 20%          0   Fix α > 0 and let U = B(0,1). Show there exists a constant C, depending   only on n and α, such that                  2       2                ∫u dx ≦ C ∫|Du| dx,                U      U   provided                  1            |{x∈U|u(x)=0}|≧α, u∈H(U).  4. 20%  1 n   Let u∈C (R ). Prove that       c         1                    |Du(y)|       -------- ∫|u(y)-u(x)|dy ≦ C ∫  ------------dy.       |B(x,r)| B(x,r)        B(x,r)  |y-x|^(n-1)              n   for any ball B(x,r)⊆R.  5. 20%   1,p n              _n   Let u∈W (R ), u has compact support in R ,          + n n-1 +   and Tu = 0 on ∂R = R , where T is the trace operator.            +   Prove that                  p       p-1 xn    p-1           ∫|u(x',x_n)| dx' ≦ C (x_n) ∫ ∫ |Du| dx'dt          R^(n-1)             0 R^(n-1)   for a.e. x_n > 0 -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 1.162.79.123 ※ 文章網址: https://www.ptt.cc/bbs/NTU-Exam/M.1433486453.A.C8C.html