精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰金融數學一 課程性質︰數學系選修 課程教師︰彭栢堅 開課學院:理學院 開課系所︰數學系 考試日期(年月日)︰101.01.09 考試時限(分鐘):180min. 是否需發放獎勵金:是 (如未明確表示,則不予發放) 試題 : Open book, calculators allowed, no computers. Table of normal distribution is provided. Show all working: points will be deducted if sufficient working is not shown. 1. Let Wt be Brownian motion. (a) Using the independence of Wt - Ws and Ws or otherwise, find P(Wt≦y∣Ws = x) if t>s>0 and so write down the conditional density function of Wt fiven Ws = x. (b) Write down the density function of Ws if s>0. (c) Using (a)and (b) or otherwise, write down the joint density function of Wt and Ws when t>s>0. (d) Write down the density function of Wt if t>0. (e) Using (c) and (d) or otherwise, write doown the conditional density function os Ws, given that Wt = y, when t>s>0. 2. (a) Using the independence of Wt-Ws and Ws or otherwise,for x≧0 and t>s>0, find the conditional probability P( Wt^2 - Ws^2 ≦0 ∣Ws^2 = x). (b) t s Show that ∫ Wu dWu and ∫ Wu dWu are not independent when s 0 t>s>0. (Hint:apply Ito's formula to Wt^2 and use (a).) 3. Find the solution of the stochastic differential equation dZt = (a*log Zt + b)*Zt dt +σZt dWt with value Zo at t=0, where a, b and σ are constants with a≠0. (Hint: define Yt = log Zt and use Ito's formula; then make a further transformation.) 4. Consider the Black-Scholes market consisting of a sotck whose price St follows geometric Brownian motion dSt = μSt dt +σSt dWt and a risk-free asset Bt= e^rt wgere So= 50, σ= 0.25, and r=0.06. Calculate the price at time t=0 of the options with payoffs at time T=0.25: (註:ST 中的T應為下標,但打不出來。) (a) 55-ST if ST<55 and 0 otherwise; (b) 45-ST if ST<45 and 0 otherwise; (c) 10 if ST≦45, 55-ST if 45<ST<55 and 0 if ST≧55. -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.51.124