精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰金融數學一 課程性質︰數學系選修 課程教師︰彭栢堅 開課學院:理學院 開課系所︰數學系 考試日期(年月日)︰2011/01/08 考試時限(分鐘):180min. 是否需發放獎勵金:是 (如未明確表示,則不予發放) 試題 : Open book, open notes. Calculatiors are allowed. No computers or mobile phones. No points for answers without full justification.] 1. Let Wt be suandard Brownian motion. (a) Find P(Wt≧1 for some t, 0≦t≦2). (b) Find P(W1≦1, Wt≧3 for some t belongs to [0,1]). (c) Find P(W1>W2, W4<W1). t 2. Show that Yt = Wt^3 - 3* ∫ Ws ds is a martingale. Also find Var(Yt). 0 3. By applying Ito's formula to Xt = ln Zt or otherwise, solve the stochastic differential equation dZt = Zt* (-ln Zt + 0.5*t^2) dt + t*Zt dWt. 4. (a) Suppose the current stock prise is 90, the interest rate 0.03 and the volatility 0.25. Use the Black-Scholes formula to calculate the price of a call with expiry t0 = three months and exercise price c=95. (b) Same as (a) but now the option is a put. (c) Deduce the price of an option which pays S下標t0 -95 if S下標t0 >95 and 95-S下標t0 if S下標t0 <95. (d) Deduce the price of an option which pays S下標t0 if S下標t0 <95 and 0 otherwise. 5. Gvie a formula for the Black-Scholes price of the option with payoff (ln S下標t0)^3. Also give the stock holding in the replicating portfolio. -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.51.124