精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰線性代數一 課程性質︰數學系必修 課程教師︰朱樺 開課學院:理學院 開課系所︰數學系 考試日期(年月日)︰2015/1/16 考試時限(分鐘):160分鐘 試題 : (1) Let A∈M (F) be of rank n and B∈M (F) be of rank p. 5% m*n n*p Determine the rank of AB. (2) Let V = M (F) and B∈V. If T is a linear operator on V defined by 5% n*n T(A) = AB - BA for all A∈V, and if f is the trace function, t what is T f ? (3) Describe explicitly al 3*3 row reduced echelon forms. 10% (4) Let V = {(x_1,x_2,x_3,x_4,x_5)}∈R^5 : 2x_1 - 2x_2 + 3x_3 - x_4 + x_5 = 0}. 10% Extend {(0,1,1,1,0)} to a basis for V. (5) (a) Let y(t) be a real-valued function. Solve the differential equation 10% (7) (4) y -2y + y' = 0 (b) Let y(t) be the polynomial of degree at most 5. Solve the differential equation (7) (4) y -2y + y' = 5t^4 - 8t^3 + 9t^2 - 248t + 101 ┌ ┐ (6) Let A = │ 1 -1 -2 3 │ 15% │ 0 1 1 -1 │ │-1 3 4 -5 │ │ 2 -1 -1 1 │ │ 1 0 3 -6 │ └ ┘ (a) Find a rank 1 matrix B∈M (R) such that BA = O 4*5 4 (b) Find a rank 2 matrix B∈M (R) such that BA = O 4*5 4 (c) Find a rank 2 matrix C∈M (R) such that the equation AX=C is sovable, 4*5 where X = [x_ij] is a 4*4 matrix. (d) Find a rank 3 matrix C∈M (R) such that the equation AX=C is sovable, 4*5 where X = [x_ij] is a 4*4 matrix. ┌ ┐ (7) (a) Let C = │-1 0 -2 2 │. Find an integer d such that the incerse of C 20% │ 3 0 d -1 │ belings to in M (Z). │ 0 1 -1 1 │ 4*4 │ 0 0 2 -3 │ └ ┘ (b) For such d, find the inverse of C. ┌ ┐ (c) Let A = │ a_11 a_12 0 0 a_15 0 1 │ │ a_21 a_22 0 0 a_25 1 0 │ │ a_31 a_32 0 -1 a_35 0 1 │ │ a_41 a_42 0 1 a_45 0 0 │ │ a_51 a_52 1 0 a_55 0 0 │ └ ┘ ┌ ┐ and B = │ 1 0 -1 0 -2 2 │ be the row reduced echolon form of A. │ 0 1 3 0 d -1 │ │ 0 0 0 1 -1 1 │ │ 0 0 0 0 2 -3 │ │ 0 0 0 0 0 0 │ └ ┘ Find A. (8) Let V be a vector space over C. Suppose that f and g are linear functionals 10% on V such that the function h(x) = f(x)g(x) is also a linear function on V. Prove that either f=0 or g=0. [Hint] There are x,y∈V such that f(x)≠0 and g(y)≠0. Then use the linearity of h. (9) Let A∈M be nonzero. Let k denote the largest integer such that some 10% n*n k*k matrix has a nonzero determonant. Prove that rank(A) = k. ┌ ┐ (10) Let A = │-a_n 0 ... 0 a_1 │ 15% │ 0 -a_n ... 0 a_2 │ │ .  . 0 . │ │ : : : : │ │ 0 0 .. -a_n a_n-1 │ └ ┘(n-1)*n ┌ ┐ B = │b_11 b_12 ... .. b_1,n-1│ │b_21 b_22 ... .. b_2,n-2│ │ . . . │ │ : : : │ │b_n1 n_n2 ... .. b_n,n-1│ └ ┘n*(n-1) ┌ ┐ and C = │a_1 b_11 b_12 ... .. b_1,n-1│ │a_2 b_21 b_22 ... .. b_2,n-2│ │ . . . . │ │ : : : : │ │a_n b_n1 n_n2 ... .. b_n,n-1│ └ ┘n*n n-2 Show that det(AB) = a_n det(C). -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 119.14.43.11 ※ 文章網址: https://www.ptt.cc/bbs/NTU-Exam/M.1421505322.A.AE4.html ※ 編輯: starsnight (119.14.43.11), 01/17/2015 22:36:05
BreathWay : 推~ 01/18 02:37