精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰線性代數二 課程性質︰數學系必修 課程教師︰黃漢水 開課學院:理學院 開課系所︰數學系 考試日期︰2009年6月17日 考試時限:180分鐘 是否需發放獎勵金:是 試題 : Let R be the field of all real numbers. 一 Let f(x,y) = (7x^2 + 8xy)/(x^2 + 2xy + 2y^2) for (x^2 + 2xy + 2y^2) ≠0 Find the minimum value and the maximum value of f(x,y) 二 Let A = ┌ 1 -2 -1 -2┐ |-2 5 3 3|∈ Mat_4x4(R) |-1 3 3 3| └-2 3 3 13┘ (1) Find an invertible matrix K belonging to Mat_4x4(R) and α_1 α_2 α_3 α_4 belonging to R ┌α_1 0 0 0 ┐ such that (K^T)AK = | 0 α_2 0 0 | | 0 0 α_3 0 | └ 0 0 0 α_4 ┘ (2) Is there an invertible matrix C belonging to Mat_4x4(R) such that A = (C^T)C? Prove yor answer. 三 Let y = y(t) be a function such that y"'(t) - 2y"(t) + y'(t) = 2exp(t), y(0) = 3, y'(0) = 5, y"(0) = 10 Find y(t). 四 Let F be a field , B belonging to Mat_nxn(F), V_i = { (B^i)u │u belonging to Mat_nx1(F) = F^n } and W = nullspace of B. Suppose that B^3 = 0_nxn belonging to Mat_nxn(F) and u_1 u_2 u_3 belonging to F^n → → → such that (B^3)u_1 = 0, (B^3)u_2 = 0, Bu_3 = 0 and (B^2)u_1, (B^2)u_2, u_3 are linearly independent. (1) Prove that u_1, u_2,Bu_1, Bu_2, (B^2)u_1, (B^2)u_2, u_3 are linearly independent. (2) If dim(V_1) = 2, dim(V_2∩W) = 2, dim(W) = 3, then prove that for any u ∈ F^n, there are α_1 α_2 α_3 α_4 α_5 α_6 α_7 u = α_1(u_1) + α_2(u_2) + α_3(Bu_1) + α_4(Bu_2) + α_5(B^2)u_1 + α_6(B^2)u_2 + α_7(u_3) 五 Let ┌2 0 2┐ |0 2 0| |1 2 2| ┌1 0 0 1 0 1┐ C_1 = |1 0 0| C_2 = |0 1 0 1 1 0| over F = Z_3 = {0 1 2} |0 1 0| └0 0 1 0 1 1┘ └0 0 1┘ B = C_1*C_2 and A = B + 2*I_6 Find an invertible matrix K belonging to Mat_6x6(F) such that K^(-1)AK = J is Jordan form of A -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.199.240
like1234567 :第二題的第一小題 α_3和α_4 打錯了? 06/17 22:35
dave1988 :恩 打錯了 06/17 23:51
※ 編輯: jrpg0618 來自: 140.112.199.240 (06/18 00:21)