精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰線性代數二 課程性質︰數學系必修 課程教師︰黃漢水 開課學院:理學院 開課系所︰數學系 考試日期︰2009年04月22日 考試時限:110分鐘,10:20-13:10 是否需發放獎勵金:是 試題 : Let R be the field of all real numbers. 一 Let H = ┌ 1 1 -1 1 ┐ ∈ Mat4*4(R). Find det(H). (15%) | 1 1 -1 -1 | | 1 -1 -1 1 | └ 1 -1 1 -1 ┘ 二 Let A = ┌ a ┐[ 1 2 3 4 ] ∈ Mat4*4(R). Find the determinant det(A+I_4). | b | | c | └ d ┘ (20%) 三 Let A = ┌ 2 -2 2 ┐ ∈ Mat3*3(R). (25%) |-2 5 -4 | └ 2 -4 5 ┘ (1) Find the charateristic polynomial p(t) = (-1)^3 det(A-tI_3) of A. (2) Find the minimal polynomial m(t) of A. (3) FInd an invertible matrix K in Mat3*3(R) and a diagonal matrix Λ ∈ Mat3*3(R) such that AK = KΛ and (K^T)K = I_3. (if such matrices exist) (4) How many matrices B in Mat3*3(R) such that B^2 = A. ∞ 四 Let u = {y_n} in R^∞ such that y_0 = 19, y_1 = -5 n=0 and for any n, 2y_n+2 = y_n+1 + y_n. (20%) (1) Find y_n. (2) Find the values y_10, y_13. (3) Find the limit lim y_n. (if such limit exists) n→∞ 五 Let A = ┌ 0.2 0.2 0.2 ┐ ∈ Mat3*3(R) and u = ┌ 20 ┐. (20%) | 0.6 0.4 0.5 | | 20 | └ 0.2 0.4 0.3 ┘ └ 15 ┘ (1) Find the all eigenvalues of A. [1] (2) Find the lim A^n u. (if such limit exists) n→∞ 註解 [1] "Find the all eigenvalues of A" 為題目原文,並非筆誤。 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.91.80