精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰線性代數二 課程性質︰數學系大一必修 課程教師︰翁秉仁 開課學院:理學院 開課系所︰數學系 考試日期︰2010年03月26日(五),11:20-12:10 考試時限:50分鐘 是否需發放獎勵金:是 試題 :             線性代數小考 2010/03/26 1. [40%] Diagonalize the following square matrix, or given a reason why it is not diagonalizable.                ┌ 2 0 1 ┐                │ 0 2 0 │                └ 0 0 1 ┘ 2. [30%] Use diagonalization process to find square matrix A such that    A^2 - 2A = ┌ -3 -3 ┐          └ 2 2 ┘  Find two examples of such a matrix.        ∞ 3. [30%] {a_n}n=1 is a real sequence with the following recursive relation:    a_(n+2) = -2(a_(n+1) + a_n)  If a_0 = 0 and a_1 = 1, find a general formula to express a_n. No imaginary  unit i is allowed in your formula.  (Hint: You might need the Euler formula: e^(iθ) = cos θ+ i*sinθ.) -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.252.31