精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰線性代數二 課程性質︰數學系大一必修 課程教師︰翁秉仁 開課學院:理學院 開課系所︰數學系 考試日期︰2010年03月12日(五),11:20-12:10 考試時限:60分鐘 是否需發放獎勵金:是 試題 :             線性代數小考 2010/03/12        ┌ -1 1 -1 ┐ 1. [30%] A = │ -1 1 0 │. Find all eignevalues and the corresponding        └ 0 0 1 ┘ eigenspaces of A. 2. [30%] Suppose u and v are two non-zero vectors in |R^n, we define the n ×n square matrix A by   A = u . v^T  a. Find all eigenvalues and the corresponding eigenspaces of A.[20%]  b. Could we always find an eigenbasis for A?[10%] 3. [40%] Let P2 be the vetor space of polynomials whose degree are ≦2 and M2 be the vector space of 2 by 2 square matrices. A = ┌ 1 1 ┐. We define the map                           └ 1 0 ┘   T : P2 → M2 by T(at^2 + bt +c) = aA^2 + bA + cI.  a. Prove that T is a linear transformation.[8%]  b. Let 1,t,t^2 be a basis of P2; and ┌ 1 0 ┐,┌ 0 1 ┐,┌ 0 0 ┐,                     └ 0 0 ┘ └ 0 0 ┘ └ 1 0 ┘   ┌ 0 0 ┐ be a basis of M2. Find the correspnding matrix [T] of T w.r.t   └ 0 1 ┘   these bases. [8%]  c. Describe the ker T. [8%]  d. Describe the im T. [8%]  e. Does A^5 ∈im T? [8%] -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.252.31