→ t0444564 :已收錄 05/06 03:51
課程名稱︰線性代數二
課程性質︰數學系大一必修
課程教師︰翁秉仁
開課學院:理學院
開課系所︰數學系
考試日期︰2010年04月08日(五),11:20-12:10
考試時限:50分鐘
是否需發放獎勵金:是
試題 :
線性代數小考 2010/04/08
1. [50%]
(a) [30 pt] Solve the system of differential equations:
x'(t) = (1/√2) * z(t)
y'(t) = (1/√2) * z(t)
z'(t) = -(1/√2)* x(t) - (1/√2)*y(t)
(b) [10 pt] Describe all the constant solutions.
(c) [10 pt] Except for the above constant solutions, show that a general
solution is loacted in a plane and is of constant distance to a line in |R^3.
2. [20%] Solve the following equation using whatever method you prefer:
4y''(t) + 4y'(t) + y(t) = 0 , y(0) = 1, y'(0) = 0
3. [30%] ┌ x(t) ┐ satisfies the following equation and initial condition
└ y(t) ┘
┌ x(0) ┐ ┌ α ┐
└ y(0) ┘ = └ β ┘
┌ x'(t) ┐ = ┌ -1 2 ┐┌ x(t) ┐
└ y'(t) ┘ └ 0 1 ┘└ y(t) ┘
(a) [20 pt] Use e^(At)X0 method to find the solution.
(b) [10 pt] For any possible ┌ α ┐≠┌ 0 ┐, discuss completely the
└ β ┘ └ 0 ┘
behavior of
x(t) y(t)
lim -------------------- and lim ---------------------
t→∞ √(x^2(t) + y^2(t)) t→∞ √(x^2(t) + y^2(t))
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 140.112.252.31