精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰線性代數二 課程性質︰數學系大一必修 課程教師︰翁秉仁 開課學院:理學院 開課系所︰數學系 考試日期︰2010年04月08日(五),11:20-12:10 考試時限:50分鐘 是否需發放獎勵金:是 試題 :             線性代數小考 2010/04/08 1. [50%]  (a) [30 pt] Solve the system of differential equations:      x'(t) = (1/√2) * z(t)      y'(t) = (1/√2) * z(t)      z'(t) = -(1/√2)* x(t) - (1/√2)*y(t)  (b) [10 pt] Describe all the constant solutions.  (c) [10 pt] Except for the above constant solutions, show that a general  solution is loacted in a plane and is of constant distance to a line in |R^3. 2. [20%] Solve the following equation using whatever method you prefer:    4y''(t) + 4y'(t) + y(t) = 0 , y(0) = 1, y'(0) = 0 3. [30%] ┌ x(t) ┐ satisfies the following equation and initial condition      └ y(t) ┘  ┌ x(0) ┐  ┌ α ┐  └ y(0) ┘ = └ β ┘     ┌ x'(t) ┐ = ┌ -1 2 ┐┌ x(t) ┐     └ y'(t) ┘  └ 0 1 ┘└ y(t) ┘  (a) [20 pt] Use e^(At)X0 method to find the solution.  (b) [10 pt] For any possible ┌ α ┐≠┌ 0 ┐, discuss completely the                 └ β ┘ └ 0 ┘  behavior of           x(t)              y(t)   lim  -------------------- and lim ---------------------   t→∞ √(x^2(t) + y^2(t))   t→∞ √(x^2(t) + y^2(t)) -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.252.31
t0444564 :已收錄 05/06 03:51