精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰線性代數二 課程性質︰數學系大一必修 課程教師︰翁秉仁 開課學院:理學院 開課系所︰數學系 考試日期︰2010年06月23日(五),11:20-12:10 考試時限:50分鐘 是否需發放獎勵金:是 試題 :                Linear Algebra Final                  2010/06/23 A. [25%] Choose 5 problems to answer (choose only one form each set Xa./Xb.).   Judge if the statemnets are correct or not. Supply a simple explanation or   give a counterexample.  1a. If A is a m ×n non-zero matrix and m≧n, then (A^T)A is a positive    definite matrix.  1b. If A is positive definite, then there is always a matrix B such that    B^2 = A.  2a. Let A be a order n complex square matrix. Suppose A is Hermitian (i.e.    A^H = A or A^* = A), then det(A)∈|R.  2b. If the matrix A+iB is Hermitian, where A and B are real square matrices.    Then A and B are both symmetric matrices.          ┌λ 1 0┐       ┌ λ^(-1)  1   0  ┐  3a. λ≠0. If A~|0 λ 1|,then A^(-1) ~|  0  λ^(-1)  1  |.          └0 0 λ┘       └  0   0  λ^(-1)┘  3b. A is an order 4 square matrix. Suppose the characteristic polynomial    f_A(t) = (t-1)^4 and the minimal polynomial m_A(t) = (t-1)^2, then                    ┌ 1 1 0 0 ┐                  A ~ | 0 1 0 0 |                    | 0 0 1 1 |                    └ 0 0 0 1 ┘  4a. If the order n real square matrix A has eigenvalues λ1,...,λn, then the    singular vaules of A are |λ1|,...,|λn|.  4b. If the order n real square matrix A has singular vaules σ1,...,σn    (0 included), then the singular vaules of A^2 are (σ1)^2 , ...,(σn)^2.  5. Define a linear map T: R^n → C^n by T(e_i)=e_i, where e_i is the standard    basis for both R^n and C^n. Thus T is an linear isomorphism.  6. A: C^n → C^n is a linear transformation. im A^T is an A-invariant    subspaces of C^n.  7. Suppose A: R^n → R^n is a linear transformation and m≠n, then (A^+)A    cannot be I_n. B. [75%] For each problem, wirte down detail computation or complete reasoning.  1. [15%] For the following Hermitian matrix A, find a unitary matrix U to    diagonalize A.               A = ┌ 2 1+i ┐                 └ 1-i 2 ┘  2. [15%] For the following matrix A, find its first singular vaule    approximation and its pseudo-inverse.                 ┌ 0 1 0 ┐               A = | 2 0 2 |                 | 0 1 0 |                 └ 2 0 2 ┘  3. [15%] For the following matrix A, find a matrix S such that S^(-1)AS is    the Jordan canonical form.                 ┌ 0 0 0 1 ┐               A = | 1 0 0 -2 |                 | 0 1 0 0 |                 └ 0 0 1 2 ┘  4. [15%] Suppose the m ×n real matrix A has singular vaules σ1,σ2,...,σr,    where r = rank(A). Discuss the eignevaules and eignespaces of the    following matrix:                 ┌ 0 A ┐                 └ A^T 0 ┘_(m+n) ×(m+n)  5. [15%] A real symmetric matrix A is positive definite if (v^T)Av > 0,    ∀v≠0, prove that A is positive definite if and only if A satisfies the    Sylvester criterion              | a11 … a1i |           d_i = | … … … | > 0, i=1,2,...,n              | ai1 … aii | C. Bonus. Solve no more than one problem to increase your credit.  1. [5%] By using SCD, prove that all invertible real matrix A has polar    decomposition A = QH, where Q is orthogonal and H is positive definite.  2. [5%] A is an order n square matrix. Prove that A ~ A^T. (Assuming Jordan    Form Theorem)  3. [10%] Let A be an order n real square matrix with singular vaules σ1≧σ2    ≧…≧σn (0 included). If λ is a real eigenvaule of A, prove that    σn≦|λ|≦σ1.  4. [10%] Let A be an order 3 real square matrix. Consdier A as a linear    tragnsformation A : |R^3 → |R^3. Discuss the imgae of the unite sphere    x^2 + y^2 + z^2 = 1 under the map A.  5. [10%] Prove that     ┌ λ a12 a13 … a1,(n-1) a1n ┐ ┌λ 1 0 … 0 0┐     | 0 λ a23 … a2,(n-1) a2n | |0 λ 1 … 0 0|     | 0 0 λ … a3,(n-1) a3n |~|0 0 λ … 0 0|     | … … … …  …  … | |… … … … … …|     | 0 0 0 …  λ a(n-1)n| |0 0 0 … λ 1|     └ 0 0 0 …  0  λ ┘ └0 0 0 … 0 λ┘   ⇔ a_(i,i+1)≠0, i=1,2,...,n-1 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.252.31