精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰線性代數二 課程性質︰數學系必修 課程教師︰陳其誠 開課學院:理學院 開課系所︰數學系 考試日期︰2007年04月04日 考試時限:120分鐘 是否需發放獎勵金:是 試題 : (1) Transforn the basis [0,-2,1,2],[2,2,1,6],[0,4,0,4] of R^4 into an orthogonal basis, using the Gram-Schmidt process (25 points). And find the projection of the vector [1,1,1,1] onto the space W= sp([0,-2,1,2],[2,2,1,6]) (10 points) (2) We have a set of data:(x1,y1)=(-1,2),(x2,y2)=(0,5),(x3,y3)= (1,9). Explain the least-square method and use it to find the linear fit y=Ax+B (25 points) (3) Suppose that A is an nxn orthogonal matrix which has only real eigen-values. (a) Show that an eigen-value of A is either 1 or -1. (10 points) (b) If v,w ∈ R^n are eigen-vectors of A of different eigen-values,then v‧w = 0 (5 points) (4) Let T:R^n —→R^n be an linear transformation. Show that T is orthogonal if and only if T maps unit vector to unit vectors. (10 points) (5) Find a 4x4 projection matrix of rank 3 such that none of its entries is zero. (10 points) (6) Let A be an nxn and let A^T be its transpose. Show that for v,w ∈ R^n, we have v‧Aw=A^Tv‧w (5 points) -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.243.132