精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰線性代數二 課程性質︰數學系必修 課程教師︰陳其誠 開課學院:理學院 開課系所︰數學系 考試日期︰2007年05月02日 考試時限:120分鐘 是否需發放獎勵金:是 試題 : ¥Suppose B is a basis of the finite dimensional vector space V and v ∈ V. We use v_B to denote the coordinate of v relative to B. If T:V → V, we use R_B to denote the matrix representation of T relative to B. If B' is another basis of V, the change coordinate matrix C_B,B' is the unique matrix such that C_B,B' V_B = V_B', for all v ∈ V (1) Let V = sp{(sinx)^2,(cosx)^2}, B={(sinx)^2,(cosx)^2},v=cos2x. Find V_B (10pts). (2) Let V = sp(1,x,x^2,x^3), B =(x^3,x^2,x,1),B'={(x-1)^3,(x-1)^2, (x-1),1} and v_B = (2,0,0,7). Then v_B' = ? (10pts). (3) Let V = sp(1,x,x^2), B = (x^2,x,1), and               ┌ 5 0 2 ┐          C_B,B' = │ 0 1 1 │                └ 2 0 1 ┘ Find B' (15pts). (4) Let E be the standard basis of V = R^2 and let T: R^2 → R^2 ┌ 1 3 ┐ be the linear transformation with R_E = │ │. Find R_B for └ 2 4 ┘ B = ([1,1],[1,0]) (15pts). (5) Is the quadratic form Q(x_1,...,x_99) = x_1^2 + x_2 x_3 + ... + x_2k x_2k+1 + ... + x_98 x_99 positive definite (7 pts) ? Is there a maximum or minimum of Q(x_1,...,x_99) (8 pts)? (Why?) (6) Suppose A is an nxn matrix and v is an eigen-vector of A with eigen-value λ. (a): Is λ also an eigen-value of the transpose A^T? Prove it or give a counter-example (8 pts) (b): Is v also an eigen-vector of the transpose A^T? Prove it or give a counter-example (7 pts) (7) What is the area bounded by the ellipse x^2 + xy + y^2 = 4 ? (10 pts). (Hint: the area bound by x^2/a^2 + y^2/b^2 = 1 equals abπ ). (8) Suppose A is an nxn matrix and v_1,...,v_n ∈ R^n are eigen-vectors of A. And assume that for i≠j, the inner product v_i‧v_j = 0. Is it nacessary that A^T = A ? Prove it or give a counter-example(10 pts). -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.243.132