精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰線性代數一 課程性質︰數學系必修 課程教師:陳其誠 開課學院:理學院 開課系所︰數學系 考試日期︰2006年12月06日 考試時限:未知 是否需發放獎勵金:是 試題 : In this exam, define two linear spaces P and Pd, a 4x4-matrix A and ordered basis B of R^4 as follow:             P={a0+a1x+...+anx^n} and for integer d,            Pd={a0+a1x+...+adx^d} also             ┌ 1 2 -3 0 ┐             │ 3 5 2 -2 │          A =  │-2 -3 -4 1 │             └ 1 0 1 0 ┘ and      B={v1=(1,1,1,1),v2=(1,0,1,-1),v3=(0,1,0,1),v4=(0,0,1,-1)} (1) (a) Find the coordinate of the vector v =(3,1,9,-7) relative to the ordered basis B (20 points). (b) Suppose that T:R^4->R^4 is the linear transformation so that A is the matrix representation of T relative to B,B. Calculate the coordinate of the vector T(v) relative to the standard basis (20 points). (2) Find a basis of the subspace sp(x^3,x^2+1,x^2+x-1,x^3-x^2-1,2x-4) in P (15 points). (3) Let V=sp(1,x,x^2)⊂P4 and let V^⊥ = {g∈p4│(f,g)=0,any f∈V}, where              1            (f,g)=∫ f(x)g(x)dx.             -1 Find a basis of V^⊥ (20 points). (4) Find two subspace V and W in R^6 such that dimV=dimW=4 and dimV∩W=2 (10 points). (5) Let W be a subspace of a finite dimensional inner-product space V. Let W^⊥={v∈V│(v,w)=0 any w ∈ W}.   (a) Show that W∩W^⊥={0} (5 points).   (b) Show that dimW+dimW^⊥dimV and for every x ∈ V there     are unique w ∈W and v ∈W^⊥ such that x=w+v (5 points).   (c) Suppose V = R^5 (with the standard inner-product), W=sp((1,1,1,0,1),(,1,2,3,1,1)) and x=(1,0,0,0,0). Find the vectors w and v in (b) (5 points). -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.243.132