課程名稱︰普通化學甲下
課程性質︰系訂必修
課程教師︰陸駿逸
開課學院:理學院
開課系所︰化學系
考試日期(年月日)︰97年4月15日
考試時限(分鐘):10:25~12:20 共115分鐘
是否需發放獎勵金:是 謝謝
(如未明確表示,則不予發放)
試題 :
MIDTERM EXAM
1.(10 pts)Write down the definitions of (i)Carnot engine, (ii)ideal gas.
2.(20 pts)Suppose that your Christmas gift is a super engine which operates
between three heat reservoirs T1=100K, T2=200K, T3=300K where the super
engines exchange heats Q1=-200J, Q2=300J, Q3=400J with the three reservoirs
respectively. (i)What is the Clausius inequality? (ii)Does this super engine
obeys the inequality? (iii)Using your super engine, together with the two
additional Carnot engines, show that the second law of the thermodynamics
will be violated.
3.(20 pts)Qualitatively describe the heat capacities Cv and Cp of the dilute
Ar(g) and HCl(g).
4.(20 pts)Propane has the structure H3C-CH2-CH3. Use average bond enthalpies
from Table 12.3 to estimate the change in enthalpy ΔH^。for the reaction
C3H8(g)+5O2(g)->3CO2(g)+4H2O(g)
Table 12.3 Average Bond Enthalpies
 ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄
Molar Enthalpy Bond Enthalpy (kJ mol^-1)
of Atomization ______________________________________________________
(kJ mol^-1) H- C- C= C≡ N- N= N≡ O- O=
 ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄
H 218.0 436 413 463
C 716.7 413 348 615 812 292 615 891 351 728
N 472.7 391 292 615 891 161 418 945
O 249.2 463 351 728 139 498
S 278.8 339 259 477
F 79.0 563 441 270 185
Cl 121.7 432 328 200 203
Br 111.9 366 276
I 106.8 299 240
 ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄
5.(20 pts)Suppose 1.00mol superheated ice melts to liquid water at 25度C. The
enthalpy change for the melting of ice at 0度C is 6007J mol^-1. (i)Assume the
specific heats of ice and liquid water have the same value and are
independent of temperature. Calculate ΔH, ΔSsys, and ΔG for this process.
(ii)If the specific heats of ice and liquid water are the same, but Cp
depends on the temperature as Cp = 1.0000+0.0001×(T-273.15)cal/gK,
calculate ΔH, ΔSsys, and ΔG for this process.
6.(15 pts)Consider a 1D particle sits in an infinite potential wall 0≦x≦L.\
The particle is originally at the ground state ψ1(x) = C1sin(πx/L) where
C1 is a normalization constant. Suppose that the external potential is add,
with the funtional form V(x,t) = (x-L/2)^2 cos(ωt) where the frequency ω
can be contrlled (scan) freely. (i)Is the transition
ψ1 -> ψ2 = C2sin(2πx/L) allowed or forbidden? (ii)Is the transition
ψ1 -> ψ3 = C3sin(3πx/L) allowed or forbidden?
7.(15 pts)Describ briefly how does the pulse NMR method detect the signal, and
how is the signal got converted into the spectrum output.
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 140.112.7.59
※ 編輯: gavin79115 來自: 140.112.7.59 (04/15 16:36)