精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰物理化學二 課程性質︰必帶 課程教師︰陳振中 開課學院:理學院 開課系所︰化學系 考試日期(年月日)︰97/12/14 考試時限(分鐘):120 (有延長20-30分鐘) 是否需發放獎勵金:yes (如未明確表示,則不予發放) 試題 : 1. Calculate the de Broglie wavelengths of the following: (a) A 1g bullet with velocity 300m/s (b) An H2 molecule with energy of 1.5kT at T=20K Useful constant: k=1.381*(10^-23) J/K, H: 1.007825*(10^-3) kg/mol ^ ^ ^ ^ 2. Evaluate the commutators [x, Px] and [y, Px]. 3. Show that the wavefunctions for a particle in a one-dimensional (1-D) box are orthogonal using sinαsinβ = 0.5cos(α-β) - 0.5cos(α+β) Hint: Wavefunction for a particle in a 1-D box is Ψn = (2/a)^(0.5)*sin(nπx/a), where n is positive integer and a is length of box. 4. For the wavefunction │ΨA(1) ΨA(2)│ Ψ = │ │ │ΨB(1) ΨB(2)│ Show that (a) the interchange of two columns or two rows changes the sign of the wave function (b) the two electrons cannot have the same spin orbital 5. Consider a particle in the rectangular box of dimension a×b: b ┌───────────┐ │ │ a│ │ │ │ └───────────┘ (a) Derive the wavefunctions and the corresponding energies. (b) Suppose we have 8 non-interacting particles placed in the box. If each particle has a spin quantum number of 2, determine the position(s) in the rectangular box where we have the highest probability to find a particle at 0K. (c) If each of the eight particles is of spin 3/2, determine the position(s) in the rectangular box where we have the highest probability to find a particle at 0K. -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.243.38