精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰化學數學一 課程性質︰必修 課程教師︰陸駿逸 開課學院:理學院 開課系所︰化學系 考試日期(年月日)︰2007/01/16 考試時限(分鐘):100 min 是否需發放獎勵金:是 試題 : 1.(20 pts) Consider the 2D Laplacian ▽^2=(對x 二次偏微+對y二次偏微). Derive the formula for ▽^2 in terms of the polar coordinate (r,θ), where r= (x^2 + y^2)^1/2 , and tan θ= y/x 2. (40 pts) (a) Find the general golution of the PDE δP δ^2 i __ Ψ(x,t) = - ____ Ψ(x,t) δt δx^2 for -π<= x <= π with the boundary condtions Ψ(-π,t)=Ψ(π,t) and δ δ __ Ψ(-π,t) = ____ Ψ(π,t) δx δx (b) Find the particular solution which further satisfies the intial condition Ψ(x,0)= cosx * sin(4x + π/3) 3.(30 pts) (a) Find the general solution of the ODEs x''(t)=-5x(t)+√3 y(t) and y''=√3x(t) -7 y(t) (b) Find the particular solution which further satisfies x(0)=1, x'(0)= 0, y(0)=0 and y'(0)=1 4.(15 pts) Let A(a matrix) be a real symmetric matrix. Let u and v be the eigenvectors of A and their eigenvalues are not the same. Show that u and v are orthorgonal. -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 218.166.235.247