精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰化學數學一 課程性質︰必修 課程教師︰陸駿逸 開課學院:理學院 開課系所︰化學系 考試日期(年月日)︰96.11.16 考試時限(分鐘):150分鐘 是否需發放獎勵金:是 (如未明確表示,則不予發放) 試題 : 1.(4pts) Find the integration factor to solve the following differential equation. (1/x^2)[dy(x)/dx] +y(x) +exp(x^3) =0 2.(6pts) Use the inverse operator method to obtain the general solution of the ODE (D^2 -5D +6)y(x)=x D = d/dx 3.(8pts) Derive the Euler equation for the unknown function ρ(x) which minimizes the following functional L F[ρ] =∫{Tρ(x)lnρ(x) +a[dρ(x)/dx]^2 +b[ρ(x)]^2 +c[ρ(x)]^3} dx 0 L subjected to the constraint ∫ρ(x)dx =1 0 where T, a, b, and care constant 4.(10pts) Use the series solution method to solve the ODE (1-x^2)D^2 y(x) -2xDy(x) +6y(x) =0 5.(12pts) Find the general solution of the coupled ODE D^2 Y1(x) +Y1(x) -Y2(x) =exp(x) D^2 Y2(x) +4Y2(x) -Y1(x) =0 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 61.230.143.150
ckarabian:唉呀p幣被賺走了 11/16 21:06