課程名稱︰微積分乙上
課程性質︰系必修
課程教師︰王振男
開課學院:醫學院
開課系所︰醫學系
考試日期(年月日)︰2012/11/27
考試時限(分鐘):110分鐘
是否需發放獎勵金:是,謝謝
(如未明確表示,則不予發放)
試題:
1.Let f(x)=(x^k)/(1+x^k), x≧0, where k is a positive integer greater than 1.
(a)(5%)Determine where f(x) is increasing and where it is decreasing.
(b)(5%)Where is the function concave up and where is it concave down?
Find all inflection points of f(x).
(c)(5%)Find lim f(x) and decide whether f(x) has a horizontal asymptote.
x→∞
(d)(5%)Sketch the graph of f(x) together with its asymptotes and
inflection points(if they exist).
2.(10%)A cable that hangs between two poles at x=-ln2 and x=ln2 takes
the shape of catenary, with equation y=(1/2)[e^x+e^(-x)].
Compute the length of the cable.
3.Denote the size of the a population by N(t), and assume that N(t) satisfies
dN/dt=N(e^-aN)-N^2, where a is a positive constant.
(a)(5%)Show that the nontrival equilibrium N* satisfies e^(-aN*)=N*.
(b)(5%)Assume now that the nontrival equilibrium N* is a function of
the parameter a. Use implicit differentiation to show that N* is a
decreasing function of a.
4.(10%)Find the equation of the tangent line to the graph of
e^[arcsin(xy)]+ln(lnx)=1 at (e,0).
5.Find the following limits.
(a)(5%) 1 1
lim (─ - ────).
x→0 x arctanx
(b)(5%)
lim x^(sinx).
x→0+
(c)(10%) x^2 sinu
∫ ──── du
0 u
lim ────────.
x→0 sinx
6.(15%)Use the mean value theorem to show that 1+arcsinx<e^(arcsinx) for
all x∈(0,1).(Hint:Consider f(x)=e^(arcsinx)-1-arcsinx).
7.(15%)Determine all local maxima and minima of f(x)=[x^(1/3)](x^2-4) for
all x∈R.
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 140.112.240.103