精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰微積分乙上 課程性質︰系必修 課程教師︰王振男 開課學院:醫學院 開課系所︰醫學系 考試日期(年月日)︰2012/11/27 考試時限(分鐘):110分鐘 是否需發放獎勵金:是,謝謝 (如未明確表示,則不予發放) 試題: 1.Let f(x)=(x^k)/(1+x^k), x≧0, where k is a positive integer greater than 1.  (a)(5%)Determine where f(x) is increasing and where it is decreasing.  (b)(5%)Where is the function concave up and where is it concave down?     Find all inflection points of f(x).  (c)(5%)Find lim f(x) and decide whether f(x) has a horizontal asymptote.          x→∞  (d)(5%)Sketch the graph of f(x) together with its asymptotes and     inflection points(if they exist). 2.(10%)A cable that hangs between two poles at x=-ln2 and x=ln2 takes  the shape of catenary, with equation y=(1/2)[e^x+e^(-x)].  Compute the length of the cable. 3.Denote the size of the a population by N(t), and assume that N(t) satisfies  dN/dt=N(e^-aN)-N^2, where a is a positive constant.  (a)(5%)Show that the nontrival equilibrium N* satisfies e^(-aN*)=N*.  (b)(5%)Assume now that the nontrival equilibrium N* is a function of     the parameter a. Use implicit differentiation to show that N* is a     decreasing function of a. 4.(10%)Find the equation of the tangent line to the graph of  e^[arcsin(xy)]+ln(lnx)=1 at (e,0). 5.Find the following limits.  (a)(5%) 1    1         lim (─ - ────).       x→0 x  arctanx  (b)(5%)         lim x^(sinx).        x→0+  (c)(10%)   x^2 sinu            ∫ ──── du            0  u         lim ────────.         x→0    sinx 6.(15%)Use the mean value theorem to show that 1+arcsinx<e^(arcsinx) for  all x∈(0,1).(Hint:Consider f(x)=e^(arcsinx)-1-arcsinx). 7.(15%)Determine all local maxima and minima of f(x)=[x^(1/3)](x^2-4) for  all x∈R. -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.240.103