作者Akerker (阿克克(*〞︶〝)/)
看板NTU-Exam
標題[試題] 101上 王振男 微積分乙上 期末考
時間Wed May 8 21:50:56 2013
課程名稱︰微積分乙上
課程性質︰系必修
課程教師︰王振男
開課學院:醫學院
開課系所︰醫學系
考試日期(年月日)︰2012/1/8
考試時限(分鐘):110分鐘
是否需發放獎勵金:是,謝謝
(如未明確表示,則不予發放)
試題:
1.(10%)Show that if f(x)=[e^x+e^(-x)]/2 then the length of the curve f(x)
between x=0 and x=a for any a>0 is given by f'(a).
2.(10%)Find the volume of the solid obtained by rotating the region bounded
by the curves y=√cosx, y=1 ,and x=π/2, about the x-axis.
3(x^2)+4x+3
3.(20%)Evaluate the integral ∫──────── dx.
(x^2+1)^2
x^2
4.(10%)Evaluate the indefinite integral ∫──────── dx for x>1.
(x^2-1)^(3/2)
5.(10%)Find the antiderivatives of (lnx)^2.
6.Let f(x)=ln(1+x) for x>-1.
(a)(5%)Show that for all x>-1,
f(x)=x-(x^2)/2+(x^3)/3-……+[(-1)^(n+1)][(x^n)/n]+R_n(x) with
explicit R_n(x).(R_n表示n為下標)
∞
(b)(10%)Can we write f(x) Σ [(-1)^(k+1)][(x^k)/k] for any x>-1?
Why? k=1
7.(10%)Determine whether the following improper integral converges or not.
π/2-
∫ [(sin(x/2))^100]tanx dx.
0
8.(15%)Determine whether the following improper integral converges or not.
∞ 1
∫ ───────── dx.
e x^[1+(sinx/lnx)]
參考答案:
2.[(π^2)/2]-π
3.3arctanx-2/(X^2+1)+c(c is a constant)
4.-x/√(x^2-1)+ln(x+√(x^2-1))+c
5.x(lnx)^2-2xlnx+2x+c(c is a constant)
6.
http://i.imgur.com/vLLV6vU.jpg
7.It diverges.
8.It diverges.
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 140.112.240.103
推 ALegmontnick:done 05/09 06:40
推 newversion :6(b)應該是 no by 收斂區間只有 -1 < x <= 1 05/09 21:27
→ newversion : 吧 05/09 21:28
推 newversion :6(a) R_n = (-1)^(n+2)*x^(n+1)/ [(n+1) (1+c)^n+1 ] 05/09 22:14
→ newversion :for some c between 0 & x 05/09 22:14
※ 編輯: Akerker 來自: 140.112.240.103 (05/12 20:36)
→ Akerker :如果知道我的成績就不會和我多說什麼了(?) 05/12 20:36
→ Akerker :剛才想了一想,我的意思是考很爛啦不是很好 XDDD 05/12 20:53