精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰微積分乙上 課程性質︰系必修 課程教師︰王振男 開課學院:醫學院 開課系所︰醫學系 考試日期(年月日)︰2012/1/8 考試時限(分鐘):110分鐘 是否需發放獎勵金:是,謝謝 (如未明確表示,則不予發放) 試題: 1.(10%)Show that if f(x)=[e^x+e^(-x)]/2 then the length of the curve f(x)  between x=0 and x=a for any a>0 is given by f'(a). 2.(10%)Find the volume of the solid obtained by rotating the region bounded  by the curves y=√cosx, y=1 ,and x=π/2, about the x-axis.                   3(x^2)+4x+3 3.(20%)Evaluate the integral ∫──────── dx.                    (x^2+1)^2                           x^2 4.(10%)Evaluate the indefinite integral ∫──────── dx for x>1.                         (x^2-1)^(3/2) 5.(10%)Find the antiderivatives of (lnx)^2. 6.Let f(x)=ln(1+x) for x>-1.  (a)(5%)Show that for all x>-1,     f(x)=x-(x^2)/2+(x^3)/3-……+[(-1)^(n+1)][(x^n)/n]+R_n(x) with     explicit R_n(x).(R_n表示n為下標)                  ∞  (b)(10%)Can we write f(x) Σ [(-1)^(k+1)][(x^k)/k] for any x>-1?     Why?           k=1 7.(10%)Determine whether the following improper integral converges or not.      π/2-      ∫ [(sin(x/2))^100]tanx dx.       0 8.(15%)Determine whether the following improper integral converges or not.      ∞     1      ∫ ───────── dx.       e x^[1+(sinx/lnx)] 參考答案: 2.[(π^2)/2]-π 3.3arctanx-2/(X^2+1)+c(c is a constant) 4.-x/√(x^2-1)+ln(x+√(x^2-1))+c 5.x(lnx)^2-2xlnx+2x+c(c is a constant) 6.http://i.imgur.com/vLLV6vU.jpg 7.It diverges. 8.It diverges. -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.240.103
ALegmontnick:done 05/09 06:40
newversion :6(b)應該是 no by 收斂區間只有 -1 < x <= 1 05/09 21:27
newversion : 吧 05/09 21:28
newversion :6(a) R_n = (-1)^(n+2)*x^(n+1)/ [(n+1) (1+c)^n+1 ] 05/09 22:14
newversion :for some c between 0 & x 05/09 22:14
Akerker :老師發的答案:http://i.imgur.com/vLLV6vU.jpg 05/12 20:35
※ 編輯: Akerker 來自: 140.112.240.103 (05/12 20:36)
Akerker :如果知道我的成績就不會和我多說什麼了(?) 05/12 20:36
Akerker :剛才想了一想,我的意思是考很爛啦不是很好 XDDD 05/12 20:53