課程名稱︰微積分乙上
課程性質︰系必修
課程教師︰王振男
開課學院:醫學院
開課系所︰醫學系
考試日期(年月日)︰2011/11/8
考試時限(分鐘):110分鐘
是否需發放獎勵金:是,謝謝
(如未明確表示,則不予發放)
試題:
1.(20%)Evaluate the following limits.
(a) x 1
∫ ───── dt
e t(lnt)^2
lim ─────────, where y=tanx is defined on (-π/2,π/2);
x→+∞ arctanx
(b) 1
lim sin(──)(lnx)^p, with p>0.
x→+∞ √x
2.(15%)Let e^(-1/|x|) if x≠0,
f(x)={
0 if x=0.
(a)Is f continuous at 0?
(b)Is f differentiable at 0?
(c)If f is differentiable at 0, is f' continuous at 0?
3.(15%)Suppose that the derivative of the function y=f(x) is
y'=[(x-1)^2](x-2)(x-4).
At what points, if any, does the graph of f have a local minimum, local
maximum, or point of inflection.
4.(10%)Find the equation of the tangent lines to the graph of
y^4-4y^2=x^4-9x^2 at (3,2) and at (3,-2).
5.(10%)Evaluate 2 cos(arcsecx)
∫ ──────── dx.
2√3 x√(x^2-1)
6.(10%)Find d √t 3
─ ∫ (x^4+──────) dx.
dt 0 √(1-x^2)
7.(20%)Find the following limit
1 n
lim ─── Σ ksin((k/n)^2).
n→∞ n^2 k=1
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 140.112.240.103