精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰微積分乙上 課程性質︰系必修 課程教師︰王振男 開課學院:醫學院 開課系所︰醫學系 考試日期(年月日)︰2011/11/8 考試時限(分鐘):110分鐘 是否需發放獎勵金:是,謝謝 (如未明確表示,則不予發放) 試題: 1.(20%)Evaluate the following limits.  (a)    x   1        ∫ ───── dt         e t(lnt)^2      lim ─────────, where y=tanx is defined on (-π/2,π/2);    x→+∞   arctanx  (b)      1     lim sin(──)(lnx)^p, with p>0.    x→+∞  √x 2.(15%)Let     e^(-1/|x|) if x≠0,        f(x)={            0 if x=0.  (a)Is f continuous at 0?  (b)Is f differentiable at 0?  (c)If f is differentiable at 0, is f' continuous at 0? 3.(15%)Suppose that the derivative of the function y=f(x) is      y'=[(x-1)^2](x-2)(x-4).  At what points, if any, does the graph of f have a local minimum, local  maximum, or point of inflection. 4.(10%)Find the equation of the tangent lines to the graph of  y^4-4y^2=x^4-9x^2 at (3,2) and at (3,-2). 5.(10%)Evaluate  2  cos(arcsecx)           ∫ ──────── dx.           2√3 x√(x^2-1) 6.(10%)Find d √t      3         ─ ∫ (x^4+──────) dx.         dt 0    √(1-x^2) 7.(20%)Find the following limit         1  n           lim ─── Σ ksin((k/n)^2).    n→∞ n^2 k=1 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.240.103