精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰微積分乙下 課程性質︰系必修 課程教師︰王振男 開課學院:醫學院 開課系所︰醫學系 考試日期(年月日)︰2012/4/17 考試時限(分鐘):110分鐘 是否需發放獎勵金:是,謝謝 (如未明確表示,則不予發放) 試題: 1.(10%)The derivative of f(x,y,z) at a point P is greatest in the direction  of v=i+j-k. In this direction, the value of derivative is 2√3.  (i) What is ▽f at P?  (ii) What is the derivative of f at P in the direction of (1/√6)(2i-j+k). 2.(10%)Find the equation of the tangent plane to the surface given by  cos(πx)-(x^2)y+e^(xz)+yz=4 at the point (0,1,2). 3.(i)(20%)Compute the curvature and the torsion of the helix      r(t)=(acost)i+(asint)j+(bt)k, a,b≧0.  (ii)(5%)For r(t) in (i), express dN/ds in terms of the unit tangent     vector T and the unit binormal B. 4.(20%)Determine whether any one of the following two functions is  differentable at (0,0).  (i)f(x,y)=√|xy|;  (ii)f(x,y)=|y|(1+x^2). 5.(20%)Classify all critical points of f(x,y)=x^4+y^4-x^2-y^2+10, i.e.,  determine whether a critical point is a local maximum, a local minimum, or a  saddle point. 6.(15%)Find the shortest distance from the point (1,0) to the parabola  y^2=4x. 參考答案: 1.(i)2i+2j-2k;(ii)0 2.2x+2y+z=4 3.(i)curvature=a/(a^2+b^2);torsion=b/(a^2+b^2);  (ii)-a/(a^2+b^2)T+b/(a^2+b^2)B 4.(i)not differentiable;(ii)not differentiable 5.(0,0)→local maximum  (0,1/√2)、(0,-1/√2)、(1/√2,0)、(-1/√2,0)→saddle point  (1/√2,1/√2)、(1/√2,-1/√2)、(-1/√2,1/√2)、(-1/√2,-1/√2)→local 6.1                                minimum -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.240.103