課程名稱︰微積分乙下
課程性質︰系必修
課程教師︰王振男
開課學院:醫學院
開課系所︰醫學系
考試日期(年月日)︰2012/4/17
考試時限(分鐘):110分鐘
是否需發放獎勵金:是,謝謝
(如未明確表示,則不予發放)
試題:
1.(10%)The derivative of f(x,y,z) at a point P is greatest in the direction
of v=i+j-k. In this direction, the value of derivative is 2√3.
(i) What is ▽f at P?
(ii) What is the derivative of f at P in the direction of (1/√6)(2i-j+k).
2.(10%)Find the equation of the tangent plane to the surface given by
cos(πx)-(x^2)y+e^(xz)+yz=4 at the point (0,1,2).
3.(i)(20%)Compute the curvature and the torsion of the helix
r(t)=(acost)i+(asint)j+(bt)k, a,b≧0.
(ii)(5%)For r(t) in (i), express dN/ds in terms of the unit tangent
vector T and the unit binormal B.
4.(20%)Determine whether any one of the following two functions is
differentable at (0,0).
(i)f(x,y)=√|xy|;
(ii)f(x,y)=|y|(1+x^2).
5.(20%)Classify all critical points of f(x,y)=x^4+y^4-x^2-y^2+10, i.e.,
determine whether a critical point is a local maximum, a local minimum, or a
saddle point.
6.(15%)Find the shortest distance from the point (1,0) to the parabola
y^2=4x.
參考答案:
1.(i)2i+2j-2k;(ii)0
2.2x+2y+z=4
3.(i)curvature=a/(a^2+b^2);torsion=b/(a^2+b^2);
(ii)-a/(a^2+b^2)T+b/(a^2+b^2)B
4.(i)not differentiable;(ii)not differentiable
5.(0,0)→local maximum
(0,1/√2)、(0,-1/√2)、(1/√2,0)、(-1/√2,0)→saddle point
(1/√2,1/√2)、(1/√2,-1/√2)、(-1/√2,1/√2)、(-1/√2,-1/√2)→local
6.1 minimum
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 140.112.240.103