作者liltwnboiz (TCL)
看板NTU-Exam
標題[試題] 99上 王振男 微積分乙上 第六次小考詳解
時間Wed Dec 15 21:09:31 2010
※ 引述《shokanshorin (上官薔凜)》之銘言:
課程名稱︰微積分乙上
課程性質︰必帶
課程教師︰王振男
開課學院:醫學院
開課系所︰醫學系
考試日期(年月日)︰2010/12/14
考試時限(分鐘):25
是否需發放獎勵金:是
dy
1. Solve cosx (—) = 2 + 2ysinx, y(0) = 1.
dx
sol> dy/dx + (-2tanx)y = 2secx => I(x) = e^(-2∫tanx dx) = (cosx)^2
=> [(cosx)^2](dy/dx) + (-2(sinx)(cox)y) = d[y(cosx)^2]/dx = 2cosx
2(sinx + C)
=> y(cosx)^2 = 2∫cosx dx => y = ──────
(cosx)^2
y(0) = 1 => 2C/1 = 1 => C = 1/2 代回即可
2. Find the orthogonal trajectories for the family of curves
y^2 = cx^3 => y^2/x^3 = c
sol> 2y(dy/dx) = 3cx^2 => dy/dx = (3cx^2)/2y = 3y/2x
The orthogonal trajectories satisfy the differential equation
dy/dx = -2x/3y => 3y dy = -2x dx
=> ∫(1/3y) dy = ∫1/2x dx => (3/2)y^2 = -x^2 + C
=> (3/2)y^2 + x^2 = C
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 140.112.4.200
※ 編輯: shokanshorin 來自: 140.112.4.200 (12/14 13:03)
推 ALegmontnick:done 12/14 13:55
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 114.24.153.162
→ shokanshorin:強者我卷友!!! 12/15 23:29
推 jech801127 :強者我同學! 12/15 23:44
→ liltwnboiz :並沒有 Orz 第五篇我還要再試試看...真難想... 12/15 23:47
→ liltwnboiz :二樓凱傑? 12/15 23:47
→ jech801127 :XD 我聞到濃濃的卷香!! 12/15 23:50
推 ALegmontnick:人卷真好!!! 收進精華區 12/16 00:37
→ liltwnboiz :這篇有錯 請小板主重新增加 感謝 12/23 22:04
※ 編輯: liltwnboiz 來自: 114.24.174.240 (12/23 22:30)