課程名稱︰微積分乙下
課程性質︰系必修
課程教師︰王振男
開課學院:醫學院
開課系所︰醫學系
考試日期(年月日)︰2013/4/16
考試時限(分鐘):110分鐘
是否需發放獎勵金:是,謝謝
(如未明確表示,則不予發放)
試題:
1.(a)(5%)Find dy/dx if cos(x^2+y^2)=sin(x^2-y^2).
(b)(5%)In what direction does f(x,y)=e^xcosy increase most rapidly at
(0,π/2)? ┌ ┐
|x^2-xy|
2.(10%)Let the vector-valued function f(x,y)=|3y^2-1|.
└ ┘
Using the linear approximation to approximate f(1.1,1.9).
3.(10%)Solve the initial value problem:y'=(1/2)y^2-2y with y(0)=-3.
4.Denote the size of a population at time t by N(t), and assume that
dN N
───=2N(N-10)(1-──) for t≧0.
dt 100
(a)(5%)Find all equilibria.
(b)(5%)Determine the stability of the equilibria you found in(a).
5.Consider the initial value problem:┌ y'=(y+1)√(y^2+2y)
└ y(0)=0
(a)(10%)Solve (1).
(b)(10%)Does (1) have only one solution?If not, can all solution of (1)
be defined for any t>0?
6.(15%)Use the method of Lagrange multiplier to find the point on the plane
2x+y+2z=1 which is nearest to the origin.
7.(10%)Find the tangent line of the curve formed by the intersection of
x^2+2(x^2)(y^2)+(y^3)z+e^z-2=0 and z(e^xy)+cos[y^3+(x^2)(z^2)]-1=0
at the point (1,0,0).
8.(15%)Find the maximum and minimum values of f(x,y)=2x^2-y^2 over the
region {(x,y):x^2+2(y-1)^2≦4}.
參考答案:
xsin(x^2+y^2)+xcos(x^2-y^2)
1.- ────────────────
ysin(x^2+y^2)-ycos(x^2-y^2)
┌ ┐
2.│-0.9│
│ 9.8│
└ ┘
4
3. ────────
1-(7/3)(e^2x)
4.(a)N=0,10,100;(b)N=0,100 →stable、N=10 →unstable
5.(a)y=sec(t+2aπ)-1(a∈Z)
(b)not;not.
6.(2/9,1/9,2/9)
7.x=1,z=0,y∈R. 7 4
8.maximum=36/5 at points (±─√2,─);minimum=-3-2√2 at point (0,1+√2)
5 5
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 140.112.240.103