精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰微積分乙下 課程性質︰系必修 課程教師︰王振男 開課學院:醫學院 開課系所︰醫學系 考試日期(年月日)︰2013/4/16 考試時限(分鐘):110分鐘 是否需發放獎勵金:是,謝謝 (如未明確表示,則不予發放) 試題: 1.(a)(5%)Find dy/dx if cos(x^2+y^2)=sin(x^2-y^2).  (b)(5%)In what direction does f(x,y)=e^xcosy increase most rapidly at     (0,π/2)?                ┌    ┐                          |x^2-xy| 2.(10%)Let the vector-valued function f(x,y)=|3y^2-1|.                          └    ┘  Using the linear approximation to approximate f(1.1,1.9). 3.(10%)Solve the initial value problem:y'=(1/2)y^2-2y with y(0)=-3. 4.Denote the size of a population at time t by N(t), and assume that   dN          N   ───=2N(N-10)(1-──) for t≧0.   dt          100   (a)(5%)Find all equilibria.  (b)(5%)Determine the stability of the equilibria you found in(a). 5.Consider the initial value problem:┌ y'=(y+1)√(y^2+2y)                    └ y(0)=0  (a)(10%)Solve (1).  (b)(10%)Does (1) have only one solution?If not, can all solution of (1)     be defined for any t>0? 6.(15%)Use the method of Lagrange multiplier to find the point on the plane  2x+y+2z=1 which is nearest to the origin. 7.(10%)Find the tangent line of the curve formed by the intersection of  x^2+2(x^2)(y^2)+(y^3)z+e^z-2=0 and z(e^xy)+cos[y^3+(x^2)(z^2)]-1=0  at the point (1,0,0). 8.(15%)Find the maximum and minimum values of f(x,y)=2x^2-y^2 over the  region {(x,y):x^2+2(y-1)^2≦4}. 參考答案:    xsin(x^2+y^2)+xcos(x^2-y^2) 1.- ────────────────    ysin(x^2+y^2)-ycos(x^2-y^2)  ┌   ┐ 2.│-0.9│  │ 9.8│  └   ┘      4 3. ──────── 1-(7/3)(e^2x) 4.(a)N=0,10,100;(b)N=0,100 →stable、N=10 →unstable 5.(a)y=sec(t+2aπ)-1(a∈Z)  (b)not;not. 6.(2/9,1/9,2/9) 7.x=1,z=0,y∈R.      7   4 8.maximum=36/5 at points (±─√2,─);minimum=-3-2√2 at point (0,1+√2)                5   5 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.240.103