精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰最適化方法 課程性質︰工商管理學系二年級以上選修 課程教師︰蔣明晃 開課學院:管理學院 開課系所︰工商管理學系 考試日期︰2013年04月15日,09:10-12:10 考試時限:180分鐘 是否需發放獎勵金:是 試題 : Optimization Method        Midterm Exam          Spring 2013 1. Each of the following tableaus represents the end of an iteration to a   maximiztion problem. Selecet one or more of the following conditions that   best describe the results indicated by each tableau, and then answer any   question in parentheses.(18 points)(Note: M is a large number, s_i is a   slack variable, e_i is a excess variable, a_i is a artificial variable)  (1).Improvement in the value of the objective function is still possible.    (Identify the variable should be brought into solution and the variable    should be removed. And determine the total improvement in the objective    function)  (2).The original problem is infeasible. (Why?)  (3).The solution is degenerate. (Which variable causes degenerate?)  (4).The solution represented by the tableau is not a basic feasible solution.    (Why?)  (5).The unique solution is obtained.  (6).One of the optimal solutions has been obtained, but an alternative    optimum exists. (Find the alternative solution)  (7).The optimal solution to the original problem is unbounded. (Why?)  Tbleau 1 ┌─┬──┬─┬─┬──┬──┐ │z│ x1 │x2│s1│ s2 │rhs │ ├─┼──┼─┼─┼──┼──┤ │1│ 0 │0│0│ 3 │ 6 │ ├─┼──┼─┼─┼──┼──┤ │0│17/2│0│1│-7/2│28│ ├─┼──┼─┼─┼──┼──┤ │0│-1/2│1│0│ 1/2│ 1 │ └─┴──┴─┴─┴──┴──┘  Tableau 2 ┌─┬─┬───┬─┬──┬──┐ │z│x1│ x2 │s1│ s2 │rhs │ ├─┼─┼───┼─┼──┼──┤ │1│0│-1/12 │0│ 1/3│ 0 │ ├─┼─┼───┼─┼──┼──┤ │0│0│-1/12 │1│ 1/3│ 0 │ ├─┼─┼───┼─┼──┼──┤ │0│1│ -1/3 │0│ 1/3│ 0 │ └─┴─┴───┴─┴──┴──┘  Tableau 3 ┌─┬─┬─┬──┬──┬─┬──┐ │z│x1│x2│ s1 │ s2 │s3│rhs │ ├─┼─┼─┼──┼──┼─┼──┤ │1│0│0│ 7/4│-1/2│0│16│ ├─┼─┼─┼──┼──┼─┼──┤ │0│0│1│ 1 │-1│0│ 2 │ ├─┼─┼─┼──┼──┼─┼──┤ │0│1│0│-1/4│ 1/2│0│ 2 │ ├─┼─┼─┼──┼──┼─┼──┤ │0│0│0│-3/4│ 1/2│1│ 0 │ └─┴─┴─┴──┴──┴─┴──┘  Tableau 4 ┌─┬─┬─┬─┬──┬──┐ │z│x1│x2│s1│ s2 │rhs │ ├─┼─┼─┼─┼──┼──┤ │1│0│0│2│M-1│ 5 │ ├─┼─┼─┼─┼──┼──┤ │0│1│0│1│ -1 │ 1 │ ├─┼─┼─┼─┼──┼──┤ │0│0│1│-1│ 2 │ 2 │ └─┴─┴─┴─┴──┴──┘  Tableau 5 ┌─┬─┬────┬─┬─┬────┬────┐ │z│x1│  x2  │e1│a1│  a2  │ rhs  │ ├─┼─┼────┼─┼─┼────┼────┤ │1│0│(M-6)/3 │M│0│(5M-3)/3│-4-10M/3│ ├─┼─┼────┼─┼─┼────┼────┤ │0│0│ -1/3 │-1│1│ -2/3 │ 10/3 │ ├─┼─┼────┼─┼─┼────┼────┤ │0│1│  2/3 │0│0│  1/3 │ 4/3  │ └─┴─┴────┴─┴─┴────┴────┘  Tableau 6 ┌─┬─┬──┬─┬─┬──┬──┬──┐ │z│x1│ x2 │x3│s1│ s2 │ s3 │rhs │ ├─┼─┼──┼─┼─┼──┼──┼──┤ │1│0│ 5 │0│0│10│10│380 │ ├─┼─┼──┼─┼─┼──┼──┼──┤ │0│0│-2│0│1│ 2 │-8│44│ ├─┼─┼──┼─┼─┼──┼──┼──┤ │0│0│-2│1│0│ 2 │-4│28│ ├─┼─┼──┼─┼─┼──┼──┼──┤ │0│1│1.25│0│0│-0.5│ 1.5│-3│ └─┴─┴──┴─┴─┴──┴──┴──┘ 2. The starting and current tableaux of a given problem are shown below.   Find the values of the unknowns A thorugh L.  Starting Tableau ┌─┬─┬─┬─┬─┬─┬──┐ │z│x1│x2│x3│x4│x5│RHS │ ├─┼─┼─┼─┼─┼─┼──┤ │1│A│1│-2│0│0│ 0 │ ├─┼─┼─┼─┼─┼─┼──┤ │0│B│C│d│1│0│ 6 │ ├─┼─┼─┼─┼─┼─┼──┤ │0│-1│3│e│0│1│ 1 │ └─┴─┴─┴─┴─┴─┴──┘  Current Tableau ┌─┬─┬─┬─┬──┬─┬──┐ │z│x1│x2│x3│ x4 │x5│RHS │ ├─┼─┼─┼─┼──┼─┼──┤ │1│0│7│J│ K │L│ 9 │ ├─┼─┼─┼─┼──┼─┼──┤ │0│G│2│-1│ 1/2│0│ F │ ├─┼─┼─┼─┼──┼─┼──┤ │0│H│I│1│ 1/2│1│ 4 │ └─┴─┴─┴─┴──┴─┴──┘ (24 points) 3.  Consider the following problem.  Maximize z = 3x1 + 4x2 + x3 + 5x4     s.t x1 + 2x2 + x3 + 2x4 ≦ 5       2x1 + 3x2 + x3 + 3x4 ≦ 8       x1,x2,x3,x4 ≧ 0  a. Construct the Dual problem.(4%)  b. Solve the Dual problem.(4%)  c. Find the primal problem using the Theorem of Complementary Slackness. 4. Consider the following problem.   Maximize Z = 2x1 + 4x2 + 3x3,  subject to   x1 + 3x2 + 2x3 = 20   x1 + 5x2    ≧ 10 and   x1≧0, x2≧0, x3≧0.   _                                 _ Let x4 be the artificial variable for the first constraint. Let x5 and x6 be the surplus variable and artificial variable, respectively, for the second constraint.   You are now given the information that a portion of the final simplex tableau is as follows:     │  │   Coefficient of:    |  Basic │  ├─┬─┬─┬─┬──┬─┬─┤Right Variable│Eq. │Z│x1│x2│x3│ x4 |x5|x6| side ────┼──┼─┼─┼─┼─┼──┼─┼─┼───   Z  |(0) | | | | |M+2 |0|M| ────┼──┼─┼─┼─┼─┼──┼─┼─┼───   x1 |(1) | | | | | 1 |0|0| ────┼──┼─┼─┼─┼─┼──┼─┼─┼───   x5 |(2) | | | | | 1 |1|-1| Please dentify the missing numbers in the final simplex tableau. Show your calculations. (24 points) 5. Consider the following problem.   Maximize Z = 3x1 + x2 + 2x3, subject to   x1 - x2 + 2x3 ≦ 20   2x1 + x2 - x3 ≦ 10 and  x1≧0, x2≧0, x3≧0. Let x4 and x5 denote the slack variables for the respective functional constraints. After we apply the simplex method, the final simplex tableasu is     │  | Coefficient of:   |  Basic │  ├─┬─┬─┬─┬─┬─┤Right Variable│Eq. │Z│x1│x2│x3│x4|x5| side ────┼──┼─┼─┼─┼─┼─┼─┼───   Z  |(0) |1|8|0|0|3|4| 100 ────┼──┼─┼─┼─┼─┼─┼─┼───   x3 |(1) |0|3|0|1|1|1| 30 ────┼──┼─┼─┼─┼─┼─┼─┼───   x2 |(2) |0|5|1|0|1|2| 40 (a) Use algebraic analysis to find the allowable range to stay optimal for each   c_j. (12 points) (b) Use algebraic analysis to find the allowable range for each b_i.(10 points) -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 118.170.204.174 ※ 編輯: t0444564 來自: 118.170.204.174 (04/20 23:42)