精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰統計學 課程性質︰系定必修 課程教師︰林惠玲老師 開課學院:社會科學院 開課系所︰經濟學系 考試日期(年月日)︰2008年1月15日 考試時限(分鐘):180分鐘 是否需發放獎勵金:是 謝謝^^ (如未明確表示,則不予發放) 試題 : 一、是非題(18分)(請先回答是或非,再說明理由,未說明理由者不予計分) 1.若X為某商品的需求量,Y為其價格,均為隨機變數,則請判斷下列是否正確。 a.若f(X|Y)=f(X),則X與Y獨立。 b.若Cov(X,Y)=0,則X與Y獨立。 c.若X=a+bY,則ρxy=1。 d.若Y=P0(常數),則ρxy=0。 e.若X與Y的計量單位改變,則Cov(X,Y)均不會改變。 2.設X為隨機變數,其平均數為μ,變異數為σ^2,今由該母體以簡單隨機抽樣,抽取 (X1,......,Xn)為樣本,請判斷下列敘述是否為正確。 _ _ _ a.令X=ΣX/n,X在估計μ時,X為所有估計式中變異數最小的。 _ b.Sx^2=Σ(X-X)^2/n-1,則Sx^2為σ^2的不偏誤估計式。 c.Sx^2為σ^2的一致性估計式。 d.Sx為σ的不偏且為一致性估計式。 二、問答題(16分) (1)請以統計觀念解釋:100家廠商專利權數的總合,接近常態分配;但廠商的    的專利權數經常為一Possion分配。(2分) (2)設X與Y為二元隨機變數,W=aX+bY,S=cX+dY,試求Cov(W,S)。(4分) (3)設X1,X2是從N(μ,σ^2)隨機抽樣的兩樣本,則(X1-X2)^2/2σ^2的分配為何, 請證明之。(3分) (4)欲知96年6月畢業生的失業率,若想自行調查研究,請問應如何抽樣?(請回答抽樣    底冊為何?應採簡單隨機抽樣,還是分層抽樣?請簡單說明其理由以及抽樣的步驟    。)(4分) (5)承上題,在95%信賴水準下,若想使抽樣誤差在2%以內,請問他至少要抽樣多少個? (3分) (未學過微積分的同學,請回答第四題,否則答第三題,答了第三題不必回答第四題) 三、(15分)Let X and Y have a joint density function given by f(x,y)=3x 0 ≦y<x≦1 =0 otherwise a. Find the marginal density function of Y.(3分) b. Find f(Y|X=x).(3分) c. Find E(Y|X=x), V(Y|X=x).(6分) d. Explain what's the difference between E(Y|X=x) and E(Y),V(Y|X=x) and V(Y).(3分) 四、(15分)Let X and Y have a joint density function given by f(x,y)=1/21(x^2+y) x=1,2; y=0,1,2 a. Find the marginal probablity function of Y.(3分) b. Find f(Y|X=x).(3分) c. Find E(Y|X=x), V(Y|X=x).(6分) d. Explain what's the difference between E(Y|X=x) and E(Y),V(Y|X=x) and V(Y).(3分) 五、(6分)Each customer who enters Larry's clothing store will purchase a suit with probablity of 0.2. Assume that the number of customers entering the store in one day is Poisson distributed wiyh mean of 50. Let X denote the number of suits Larry sold and Y denote the number of customers entered Larry's store. Use E(X)=E(E(X|Y)) and Var(X)=Var(E(X|Y))+E(Var(X|Y)) to find E(X) and Var(X). 六、(10分)The amount of fill dispensed by a bottling machine is normally distributed with σ=1 ounce. If n=9 bottles are randomly selected from the output of the machine, a. What the probablity that he sample mean will be within 0.3 ounce of the true mean? _ b. When n is larger, what will happen to the value of P(│Y-μ│≦0.3)? What's the implication of the result?(3分) c. Find P(S^2≧2).(3分) 七、(15分)劉華發現他打電話訂位飛機票時,經常是忙線中,他想估計打電話訂位   "成功"的機率為何,於是,他蒐集10次訂位的記錄,得到訂位成功打電話的次數   如下: 1, 3, 2, 4, 3, 4, 3, 2, 2, 1 (hint:該母體為幾何分配,其機率函數為 f(x)=P(1-P)^x-1 x=1,2,... =0 其他 其中P為打電話訂位成功的機率,X為打電話直到訂位成功的次數) 試回答下列小題: (下面(1)、(2)小題任選一題回答,其他(3)、(4)小題必須回答) (1)請利用最大概似法求打電話訂位成功的機率(P)的最大概似估計式(MLE)及估計值 。(6分) (2)請利用動差法求P的動差估計式(MME)及估計值。(6分) (3)試求P(X≧3)的估計值。(3分) (4)試問你所得到的P的估計式是一不偏與一致性估計式嗎?理由。(6分) 八、(20分)A survey found that households tend to spend an average of NT$17,576 for food and beverage during Chinese Lunar New Year in a small town. Assume that the survey included 25 households and the standard deviation was NT$4,470. a. With 95% confidence interval, what is the estimation of error of the population mean?(What assumptions are necessary to ensure the validity of the estimation?) b. What is the 95% confidence interval estimate of the population mean? c. What is the 95% confidence interval estimate of the population standard deviation? d. The prior year, the population mean expenditure per household was NT $17,116. Discuss the change in Chinese Lunar New Year expenditure over one-year period. e. Discuss skewness that may be present in the population. What suggestion would you make for a repeat of this study? f. If the researcher want to have 95% confidence of estimating the population mean expenditure within $1,000 and the sandard deviation is assumed to be $4,000, what sample size is needed? g. If there is one thousand households in the small town, what is the confidence interval of total expenditure?(C.C.=95%) -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.215.35
TINTINH:已收精華區:) 03/12 07:53