精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰數量方法入門 課程性質︰必修 課程教師︰陳釗而 開課學院:社會科學院 開課系所︰經濟所 考試日期(年月日)︰100.09.02 考試時限(分鐘):90 是否需發放獎勵金:是 (如未明確表示,則不予發放) 試題 : 1. For any x,y∈R^n, show that ║x+y║<= ║x║+║y║. 2. Briefly explain the Projection Theorem (in mathematics or in words). 3. Let X be a matrix of order n*k and rank k. (a)Verify that M = I-Px is an orthogonal projection matrix, -1 where Px = X(X'X)X'. (b)Verify that MX = 0. (c)Rank(M) = ? 4. (Eigenvalues, idempotent matrices, and symmetry) (a)Show that the eigenvalue of an idempotent matrix are 0 and 1. (b)Show that if A is symmetric and has only eigenvalues 0 and 1, it is idempotent. 5. Show that if a matrix P is symmetric and idempotent, then P is positive semi-definite. -1 6. Let A be a nonsingular matrix. Consider the partition of A and matrix A -1 [ -1 -1 -1 ] A = [ W (-W)(A11)(A22) ] [ -1 -1 -1 -1 -1 -1 ] [ (-A22)(A21)W (A22)+(A22)(A21)(W)(A12)(A22) ] where A = [ A11 A12 ] [ A21 A22 ] is a partition of A such that A11 and A22 are square matrices, and we define -1 W = A11-(A12)(A22)(A21). Verify that for the linear regression model y = X1*β1 + X2β2 + ε the least squares estimator for β1 is given by ^ -1 -1 β1 = (X1'(I-Px2)X1)X1'(I-Px2)y, where Px2 = X2(X2'X2)X2'. ^ ^ ^ -1 Hint: X = [X1 X2], [β1 β2]' = β = (X'X)X'y, where X is a matrix of order n*k, X1 is a matrix of order n*k1, X2 is a matrix of order n*k2, β is an k*1 vector, β1 is an k1*1 vector, β2 is an k2*1 vector, and k1+k2 = k. 7. Let X be a matrix of order n*k and rank k, and let V be symmetric and positive difinite of order n. (a)Show that the matrix -1-1 Q:= I-V^(-1/2)X(X'VX)X'V^(-1/2) is symmetric and idempotent. (b)Use part (a) and the fact that X'V^(1/2)QV^(1/2)X = 0 to show that -1-1 -1 -1 (X'VX)X'V = (X'X)X' -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 220.139.12.99
shokanshorin:100上期中考?... 09/05 22:41
fish24685 :未考先知== 09/05 23:38
s864372002 :上課時間:8/29~9/9,週一至週五每日9:10-12:10 09/06 00:51
s864372002 :意思是說只有初選一階能選囉@@! 09/06 00:53
tom5707 :!!100-1? 09/06 12:17
tigerflyer :幹 我快點衝去修 09/06 12:48
rasimul :好屌 09/06 16:26
isolator :本課程確實是100-1 是2學分的經研必修 09/06 17:06
fish24685 :太酷了.... 09/07 04:41
gj942l41l4 :這殺毀= = 09/07 17:33
hanabiz :... 09/07 18:32
tigerflyer :維基解密? 09/07 21:16
ian800726 :太殺了= =... 09/08 11:42
sheng1300905:去年差不多時間我也PO過期中考題的說 09/08 23:04
sckm160913 :維基解密正夯 09/09 05:27
lovehan :線性代數 + 計量經濟學 果然不是大學部的課... 09/09 16:04