精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰電磁學I 課程性質︰必修 課程教師︰張宏鈞 江衍偉 林怡成 林晃巖 開課學院:電機資訊學院 開課系所︰電機工程學系 考試日期(年月日)︰2010/6/25 考試時限(分鐘):110分鐘 是否需發放獎勵金:是,謝謝 (如未明確表示,則不予發放) 試題 : 1. In Fig.1, media 1 and 3 extend to infinity, and medium 2 is a dispersive ( i.e., the material parameters depend on frequency) slab. For an infinite planar sheet current, lying in z=0 plane, J_s(t) = -2J_s0[cos(1.5x10^8πt]^2 ax A/m, (ax 為x方向單位向量) there will be electric and magnetic fields in the three media. The frequency dependency of material parameters of medium 2 are listed in the following Table 1 ┌───────┬─────┬─────┐ │ │ε(ω) │μ(ω) │ ├───────┼─────┼─────┤ │ω=0 │2ε0 │2μ0 │ ├───────┼─────┼─────┤ │ω=1.5x10^8π │2.5ε0 │2.5μ0 │ ├───────┼─────┼─────┤ │ω=3x10^8π │3ε0 │3ε0 │ └───────┴─────┴─────┘ (1) Can you solve the problem by using integral form Maxwell equations? Why? (10%) (2) Can you solve the problem by using time-dependent and differential form Maxwell equations? Why? (10%) (3) Please find the time-dependent form electric- and magnetic fields in all three media. (15%) (4) Please find the time-dependent form surface current on the surface of media 3. (5%) (5) Please find the time-average Poynting vectors in media 1 and 2 and explain the physical meaning of the results briefly. (10%) Medium 1 │ Medium 2 │ Medium 3 │ │ x (μ0,ε0) │ (μ(ω),ε(ω)) │ PEC(σ=∞) ↑ │ │ │ J_s(t)↓ │ │ z=0 z=1/6 m y⊕──→z Fig. 1 for Problem 1 2. The space between two parallel conducting plates each having an area S filled with two different lossy dielectrics as shown in Fig.2 ,where the thicknesses d1,d2 << S^(1/2) = L (the length) so that the fringe effect can be neglected. A battery of dc voltage V is applied across the plates. Please determine (1) The steady current densities in both dielectrics. (10%) (2) The electric field intensities in both dielectris. (10%) (3) The surface charge densities on the plates and the interface. Please explain briefly the reason of the existence of the surface charge density on the interface. (10%) (4) If the steady magnetic field is neglected, please draw the equilivalent circuit of this system and show the circuit parameters. (10%) (5) The power dissipation in this structure. (10%) L ▅▅▅▅▅▅▅▅▅▅▅▅───┐ d1│ε1,σ1,μ1 │ │V x ├───────────┤ ┴─ ↑ │ │ ┬ │ d2│ε2,σ2,μ2 │ │ │ │ │ │ z←──⊕y ▃▃▃▃▃▃▃▃▃▃▃▃───┘ Fig.2 for Problem 2 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.244.32 ※ 編輯: niwota 來自: 140.112.244.32 (06/25 22:02) ※ 編輯: niwota 來自: 140.112.244.32 (06/25 22:04)