精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰工程數學-微分方程 課程性質︰系訂必修 課程教師︰黃天偉 丁建均 林清富 管傑雄 開課學院:電資學院 開課系所︰電機系 考試日期(年月日)︰2008.1.16 考試時限(分鐘):10:20~12:30 是否需發放獎勵金:是,謝謝 (如未明確表示,則不予發放) 試題 : 1. (x^2)(y")+xy'+(x^2-1/4)y=0 (a) (10%) Find power series solution about x=0, then expressed in terms of sin(x) and cos(x). (b) (5%) Find the general solution in terms of spherical Bessel functions on the interval (0,∞). 2. Suppose y(x) is a piecewise continuous function of x and of exponential order. It follows the differential equation xy"+y'-4y=0. (a) (10%) Please find the Laplace transform Y(s) of y(x). (b) (8%) Expand Y(s) with power series of 1/s and then the y(x) expanded with power series of x. (c) (7%) How many independent solutions can you get for the differential equation with the Laplace transform? Please give the reason. 3. Find the general solutions of (a) (8%) ┌ dx/dt = -x-2y+1 │ └ dy/dt = 3x+4y (b) (7%) ┌ 6x = 4(dx/dt)-(dy/dt) │ └ 6y = 2(dx/dt)+(dy/dt) 4. Suppose that x(t)=1 and y(t)=e^t and the interval is tε[0,1]. (a) (5%) Find the norms of x(t) and y(t) if the weight function is w(t)=t. (b) (5%) Find c such that x(t) and y(t)-cx(t) are orthogonal with respect to the weight function w(t)=t on an onterval tε[0,1]. 5. (7%) Use the method of separation of variables to solve x(a2u/axay)+u=0. (PS. "a2u/axay" 表示u對x作偏微分後,再對y作偏微分) 6. (10%) Solve the ditterential equation (a2u/ax2)+(a2u/ay2)=0, 0<x<a, 0<y<b, subject to the boundary conditions: u(0,y)=F(y), u(a,y)=G(y) 0<y<b u(x,0)=f(x), u(x,b)=g(x) 0<x<a 7. (10%) Solve that a solution of the BVP. (a2u/ax2)+(a2u/ay2)=0, -∞< x <∞, 0<y<1 au/ay|(t=0)=0, u(x,1)=f(x), -∞< x <∞ is ∞ ∞ cosh(αy)cosα(t-x) u(x,y)=(1/π)∫ ∫ f(t)--------------------dtdα 0 -∞ coshα 8.(8%) Use Fourier series to solve the differential equation x"+10x=f(t), subject to the initial conditions x(0)=0, x'(0)=0, where ┌ 5 0<t<π f(t)= │ ; f(t)=f(t+2π). └-5 π<t<2π -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.247.182
Forsomewell:連這都有人要賺批幣.....我想聽強者解惑第8題啦...Q_Q 01/20 09:24