作者cokewolf (可樂狼)
看板NTU-Exam
標題[試題] 97下 電機系統一教學 線性代數 期中考
時間Wed Apr 22 18:50:52 2009
課程名稱︰線性代數
課程性質︰必修
課程教師︰(統一教學)
開課學院:電資學院
開課系所︰電機系
考試日期(年月日)︰2009.04.22
考試時限(分鐘):100 分鐘
是否需發放獎勵金:是
(如未明確表示,則不予發放)
試題 :
1.(28%) Label the following statements as being true or false.
(Explain your answer. Answers with no explanation get 0%):
(a) Let A be an m*n matrix with reduced row echelon form R.
Then there is a unique matrix P such that PA = R.
(b) If T is a linear transformation, then the dimension of the range
T plus the dimension of the null space of T equals the dimension
of the domain of T.
(c) If A is an n*n matrix and the system Ax = b is consistent for
every b, then A is invertible.
(d) Let S be a linearly independent subset of R^n and V be a
k-dimensional subspace of R^n. If S has k vectors, then S is a
basis of V.
(e) The vectors in the vector form of the general solution to Ax = 0
form a basis for the null space of A.
(f) Let V and W be two subspaces of R^2. V∪W is a subspace of R^2.
(g) The pivot columns of the reduced row echelon form of A form a basis
for the column space of A.
2.(15%) Find the determinant of the n*n matrix
┌ ┐
│ a+b ab 0 0 … 0 0 0 │
│ 1 a+b ab 0 … 0 0 0 │
│ 0 1 a+b ab … 0 0 0 │
A = │ … … … … … … … … │
│ 0 0 0 0 … 1 a+b ab │
│ 0 0 0 0 … 0 1 a+b │
└ ┘
3.(15%) Find an explicit description of the reflection T of R^2 about
the line with equation y = mx.
4. Let T and U be linear transformations with standard matrices A and
(A^T)A, respectively. Let T be onto.
(a)(7%) Show whether U is onto, on-to-one, or invertible.
(b)(7%) What is the dimension of the null space of U? Explain your answer.
5.(8%) Prove that for any m*n matrix A and any n*p matrix B,
rank AB ≦ rank A.
6. Let T be the linear opeartor on R^3 such that
┌ ┐ ┌ ┐ ┌ ┐ ┌ ┐ ┌ ┐ ┌ ┐
│1│ │1│ │ 0│ │ 2│ │-1│ │-1│
T(│0│) = │1│, T(│-1│) =│-1│, T(│ 1│) =│ 0│
│1│ │3│ │ 1│ │ 0│ │-1│ │-1│
└ ┘ └ ┘ └ ┘ └ ┘ └ ┘ └ ┘
┌ ┐ ┌ ┐ ┌ ┐
│1│ │1│ │3│
B = { │1│,│1│,│2│} is a basis for R^3.
│0│ │1│ │1│
└ ┘ └ ┘ └ ┘
(a)(10%) Find the B-matrix representation of T.
(b)(10%) Find a basis for the null space of T and represent it in
B-coordinate vectors.
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 118.168.136.112
※ 編輯: cokewolf 來自: 118.168.136.112 (04/22 18:53)
推 c39fa362 :真有效率 04/22 19:01
推 johnjohnlin :有效率推~ 04/22 19:16