精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰工程數學-線性代數 課程性質︰必修 課程教師︰馮世邁 開課學院:電機資訊學院 開課系所︰電機工程學系 考試日期(年月日)︰2018/04/25 考試時限(分鐘):10:20-12:10 (最後好像延長10分鐘) 試題: 用右上角的*,表示向量(即課本/上課的粗體) Use of all automatic computing machines including calculator is prohibited. 1. — — | 1 0 3 1 | A = | 2 -1 5 1 | |-1 1 -2 1 | | 0 1 1 1 | — — (a)(15%)Find an invetible matrix P and the reduced row echelon form R such that PA=R. (b)(5%) Find another invertible matrix P' such that P'A=R. (Notice that P'≠P) 2.(4+8%) Define T:R^3→R^3 by — — x1 | 4x1+ x2-x3 | T ( [ x2 ] ) = | - x1- x2 | x3 | -5x1-3x2+x3 | — — Find the standard matrix of T and the inverse of T. 3. Let U1:R^n→R^m and U2:R^m→R^p be linear. (a)(5%)Prove that if U1 is not one-to-one, then U2U1 is not one-to-one. (b)(5%)If U2U1 is onto, can we say that U2 is onto? (Justify your answer.) 4. — — | 1 -1 2 1 | | 2 -1 - 1 4 | A = [a1* a2* a3* a4*] = |-4 5 -10 -6 | | 3 -2 10 -1 | — — (a)(12%)Find detA. (b)(8%) Find the determinant of the following matrices: (i) -A (ii) [a4* a3* a2* a1*] (iii)[a1* a2* a3* 2a4*-3a2*] (iv) [2a1*-a2* a2*+3a3* 7a3*-4a1* a1*+a2*+a3*]. 5. — — |-1 2 1 -1| A = | 2 -4 -3 0| | 1 -2 0 3| — — (a)(16%)Find a basis for each of the following: (i) Col A (ii) Null A (iii) Row A (iv) Col A^T (b)(10%)Let B be the basis of Null A that you obtained in Part (a). Find a basis for R^4 that contains B. 6. (a)(6%)Let A1, A2 be m x n matrices. Prove that V = {v ∈ R^n:A1v*=A2v*} is a subspace of R^n. (b)(6%)Let B be an n x (n-1) matrix with rank B = n-1. Prove that W = {w* ∈ R^n:[B w*] is not invertible} is a subspace of R^n. -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 140.112.216.224 ※ 文章網址: https://www.ptt.cc/bbs/NTU-Exam/M.1525278444.A.F03.html