精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰離散數學 課程性質︰系必修 課程教師︰陳健輝 開課學院:電資學院 開課系所︰資訊系 考試日期(年月日)︰2009/12/16 考試時限(分鐘):120 是否需發放獎勵金:是 (如未明確表示,則不予發放) 試題 : (範圍:Algebra) 1.Which of the following relations are equivalence relations?Which are partial orderings?For each equivalence relation,find the equivalence classes,and for each partial ordering,find the maximal elements and minimal elements. (10%) R1={(1,1),(2,2),(3,3),(4,4)} R2={(1,1),(2,2),(3,3),(4,4),(1,2),(2,1)} R3={(1,2),(2,1),(3,4),(4,3)} R4={(1,2),(1,3),(2,3),(3,4)} R5={(1,1),(2,2),(2,3),(3,4),(2,4)} 2.Find <e>,<a>,<b>,<c> for the following group.Is it a cyclic group?Why? (5%) ┌─┬────┐ │˙│e a b c │ ├─┼────│ │e │e a b c │ │a │a e c b │ │b │b c e a │ │c │c b a e │ └─┴────┘ 3.Let(R,+,˙)be a ring whose all possible operations are shown below. ┌─┬────┐ ┌─┬────┐ │+ │z u a b │ │.│z u a b │ ├─┼────┤ ├─┼────┤ │z │z u a b │ │z │z z z z │ │u │u z b a │ │u │z u a b │ │a │a b z u │ │a │z a b u │ │b │b a u z │ │b │z b u a │ └─┴────┘ └─┴────┘ (a)Is R a field?Explain your reason. (5%) (b)R'={u,z} is a subring.Is R' an ideal?Explain your reason. (5%) 4.Prove that if (G,˙)is a cyclic group,then (G,˙)is abelian. (5%) 5.Prove that if G is a group and |G|>1 is a prime number,then G is cyclic (5%) 6.Let A={1,2,3,4,5,6,7}.Determine an equivalence relation R on A with |R|∈ {8,9},or explain why no such R exists. (10%) 7.Suppose that (G,˙)is a group and H is a finite nonempty of G.Prove that if H is closed under the binary operation of G,then(H,˙)is also a group (10%) 8.Suppose that a is a generator of a group G and |G|=n.Prove that a^3is a generator of G if and only if 3 is not a divisor of n. (10%) ____ _ _ 9.Suppose that(K,˙,+)is a Boolean algebra.Prove that(a)a˙b=a + b and _____ _ _ (b)a + b= a˙b for every a,b∈K. (10%) 10.Suppose that(K,˙,+)is a Boolean algebra and a is an atom of K.Prove that a˙b=0 or a˙b=a for every b∈K. (5%) 11.Solve x≡5(mod 7),x≡6(mod 10),and x≡9(mod 13). (10%) 12.Suppose that(R,+,˙)and(S,⊕,ⓧ)are two rings with zero elements ZR and Zs, respectively.Given a ring homomorphism f:R->S,let K={a∈R|f(a)=Zs}. Prive that (a)(K,+,˙)is a ring,and(b) K is an ideal of R. (10%) -- 大家每天都要開開心心的過喔!!! -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 123.193.6.232